

Learning ROS for Robotics
Programming

A practical, instructive, and comprehensive guide
to introduce yourself to ROS, the top-notch, leading
robotics framework

Aaron Martinez
Enrique Fernández

 BIRMINGHAM - MUMBAI

Learning ROS for Robotics Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-144-8

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

Credits

Authors
Aaron Martinez

Enrique Fernández

Reviewers
Luis Sánchez Crespo

Matthieu Keller

Damian Melniczuk

Acquisition Editors
Kartikey Pandey

Rubal Kaur

Lead Technical Editor
Susmita Panda

Technical Editors
Jalasha D'costa

Amit Ramadas

Project Coordinator
Abhijit Suvarna

Proofreader
Joanna McMahon

Copy Editors
$O¿GD�3DLYD

Mradula Hegde

Gladson Monteiro

Sayanee Mukherjee

Adithi Shetty

Indexers
Hemangini Bari

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Authors

Aaron Martinez is a computer engineer, entrepreneur, and expert in digital
fabrication. He did his Master's thesis in 2010 at the IUCTC (Instituto Universitario
de Ciencias y Tecnologias Ciberneticas) in the University of Las Palmas de Gran
&DQDULD��+H�SUHSDUHG�KLV�0DVWHU
V�WKHVLV�LQ�WKH�ÀHOG�RI�WHOHSUHVHQFH�XVLQJ�LPPHUVLYH�
devices and robotic platforms. After completing his academic career, he attended an
internship program at The Institute for Robotics in the Johannes Kepler University in
Linz, Austria. During his internship program, he worked as part of a development
team of a mobile platform using ROS and the navigation stack. After that, he was
involved in some projects related to robotics, one of them is the AVORA project
in the University of Las Palmas de Gran Canaria. In this project, he worked on the
creation of an AUV (Autonomous Underwater Vehicle) to participate in the Student
Autonomous Underwater Challenge-Europe (SAUC-E) in Italy. In 2012, he was
responsible for manufacturing this project; in 2013, he helped to adapt the navigation
stack and other algorithms from ROS to the robotic platform.

Recently, Aaron created his own company called Biomecan. This company works
with projects related to robotics, manufacturing of prototypes, and engineering
tissue. The company manufactures devices for other companies and research and
development institutes. For the past two years, he has been working on engineering
tissue projects, creating a new device to help researchers of cell culture.

$DURQ�KDV�H[SHULHQFH�LQ�PDQ\�ÀHOGV�VXFK�DV�SURJUDPPLQJ��URERWLFV��PHFKDWURQLFV��
and digital fabrication, many devices such as Arduino, BeagleBone, Servers, and
/,'$5��VHUYRPRWRUV��DQG�URERWLF�SODWIRUPV�VXFK�DV�:LÀERW��1DR�$OGHEDUDQ��DQG�
Pioneer P3AT.

I would like to thank my girlfriend who has supported me while
writing this book and gave me motivation to continue growing
professionally. I also want to thank Donato Monopoli, Head of
Biomedical Engineering Department at ITC (Canary-Islands Institute
of Technology), and all the staff there. Thanks for teaching me all
I know about digital fabrication, machinery, and engineering tissue.
I spent the best years of my life in your workshop.

Thanks to my colleagues in the university, especially Alexis Quesada,
ZKR�JDYH�PH�WKH�RSSRUWXQLW\�WR�FUHDWH�P\�ÀUVW�URERW�LQ�P\�0DVWHU
V�
thesis. I have learned a lot about robotics working with them.

Finally, thanks to my family and friends for their help and support.

Enrique Fernández is a computer engineer and roboticist. He did his Master's
Thesis in 2009 at the University Institute of Intelligent Systems and Computational
Engineering in the University of Las Palmas de Gran Canaria. There he has been
working on his Ph.D for the last four years; he is expected to become a Doctor in
Computer Science by September 2013. His Ph.D addresses the problem of Path
Planning for Autonomous Underwater Gliders, but he has also worked on other
robotic projects. He participated in the Student Autonomous Underwater
Challenge-Europe (SAUC-E) in 2012, and collaborated for the 2013 edition. In 2012,
he was awarded a prize for the development of an underwater pan-tilt vision system.

Now, Enrique is working for Pal-Robotics as a SLAM engineer. He completed his
internship in 2012 at the Center of Underwater Robotics Research in the University
of Girona, where he developed SLAM and INS modules for the Autonomous
Underwater Vehicles of the research group using ROS. He joined Pal-Robotics
in June 2013, where he is working with REEM robots using the ROS software
intensively and developing new navigation algorithms for wheeled and biped
humanoid robots, such as the REEM-H3 and REEM-C.

During his Ph.D, Enrique has published several conference papers and publications.
Two of these were sent to the International Conference of Robotics and Automation
(ICRA) in 2011. He is the co-author of some chapters of this book, and his Master's
Thesis was about the FastSLAM algorithm for indoor robots using a SICK laser
scanner and the odometry of a Pioneer differential platform. He also has experience
with electronics and embedded systems, such as PC104 and Arduino. His background
covers SLAM, Computer Vision, Path Planning, Optimization, and Robotics and
$UWLÀFLDO�,QWHOOLJHQFH�LQ�JHQHUDO�

I would like to thank my colleagues in the AVORA team, which
participated in the SAUC-E competition, for their strong collaboration
and all the things we learned. I also want to thank the members of
my research group at the University Institute of Intelligent Systems
and Computational Engineering and the people of the Center
of Underwater Robotics Research in Girona. During that time, I
expended some of the most productive days of my life; I have learned
a lot about robotics and had the chance to learn player/stage/Gazebo
and start with ROS. Also, thanks to my colleagues in Pal-Robotics,
who have received me with open arms, and have given me the
opportunity to learn even more about ROS and (humanoid) robots.
Finally, thanks to my family and friends for their help and support.

About the Reviewers

Luis Sánchez Crespo has completed his dual Master's degree in Electronics and
Telecommunication Engineering at the University of Las Palmas de Gran Canaria.
He has collaborated with different research groups as the Institute for Technological
Development and Innovation (IDETIC), the Oceanic Platform of Canary Islands
(PLOCAN), and the Institute of Applied Microelectronics (IUMA) where he actually
researches on imaging super-resolution algorithms.

His professional interests lie in computer vision, signal processing, and electronic
design applied on robotics systems. For this reason, he joined the AVORA team, a
group of young engineers and students working on the development of Underwater
Autonomous Vehicles (AUV) from scratch. Inside this project, Luis has started
developing acoustic and computer vision systems, extracting information from
different sensors such as hydrophones, SONAR, or camera. He has also been
involved in the electronic design of the vehicle. Finally, he has played the Team
Leader role during the preparation of the SAUC-E'13 challenge.

With a strong background gained in marine technology, Luis joined Biomecan, a
young startup, where he works on developing remotely operated and autonomous
vehicles for aquatic environments.

He is very enthusiastic and an engineer in multiple disciplines. He is responsible for
his work. He can manage himself and can take up responsibilities as a Team Leader, as
demonstrated at the SAUC-E competition directing the AVORA team. His background
in electronics and telecommunications allows him to cover a wide range of expertise
from signal processing and software, to electronic design and fabrication.

He has focused his career in 2D and 3D signal processing, with the development
of a system for tracking and detecting signs of exhaustion and the risk of falling
asleep in drivers. After this successful research, he started working on two different
SURMHFWV�DW�WKH�VDPH�WLPH��7KH�ÀUVW�RI�WKHVH�SURMHFWV�IRFXVHG�PDLQO\�RQ�DFKLHYLQJ�
video sequences enhancement applying super-resolution. The second project, and
one of his most important achievements, was participating in the development
of an autonomous underwater vehicle for the Students Autonomous Underwater
Challenge-Europe (SAUC-E) in which his team achieved great recognition with
the fourth most important prize. In his second year, he took up the mantle of
Team Leader, again being recognized by his work during competition.

I would like to thank my family for supporting me since my
ÀUVW�VWHS��*XD[DUD�IRU�OLJKWLQJ�P\�SDWK��DQG�P\�WHDPPDWHV�IRU�
supporting me. I would also like to thank Dario Sosa Cabrera
and Anil Motilal Mahtani Mirchandani.

Matthieu Keller is a French student who has completed several internships in
development, system administration, and cyber security. His education is mainly
LQ�&RPSXWHU�6FLHQFH�DQG�5RERWLFV��EXW�KH�HQMR\V�DOO�NLQGV�RI�VFLHQWLÀF�WRSLFV�

Damian Melniczuk�JUDGXDWHG�ZLWK�3K\VLFV�IURP�WKH�:URFãDZ�8QLYHUVLW\�RI�
Technology, where he currently works in the quantum cryptography laboratory.
Apart from using photons for transporting encryption keys, he is also involved
in hacker culture and open source movement. His current projects are: setting up
Wroclaw Hackerspace (http://hswro.org/) and building an open source modular
home automation system (http://openhomeautomation.blogspot.com/).

www.PacktPub.com

6XSSRUW�¿OHV��H%RRNV��GLVFRXQW�RIIHUV�DQG�PRUH
You might want to visit www.PacktPub.com�IRU�VXSSRUW�ÀOHV�DQG�GRZQORDGV�UHODWHG�
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
DQG�H3XE�ÀOHV�DYDLODEOH"�<RX�FDQ�XSJUDGH�WR�WKH�H%RRN�YHUVLRQ�DW�www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

'R�\RX�QHHG�LQVWDQW�VROXWLRQV�WR�\RXU�,7�TXHVWLRQV"�3DFNW/LE�LV�3DFNW
V�RQOLQH�
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt
�� Copy and paste, print and bookmark content
�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started with ROS 7

Installing ROS Electric – using repositories 10
$GGLQJ�UHSRVLWRULHV�WR�\RXU�VRXUFHV�OLVW�¿OH� ��
6HWWLQJ�XS�\RXU�NH\V� ��
,QVWDOODWLRQ� ��
7KH�HQYLURQPHQW�VHWXS� ��

Installing ROS Fuerte – using repositories 14
&RQ¿JXULQJ�\RXU�8EXQWX�UHSRVLWRULHV� ��
6HWWLQJ�XS�\RXU�VRXUFH�OLVW�¿OH� ��
6HWWLQJ�XS�\RXU�NH\V� ��
,QVWDOODWLRQ� ��
7KH�HQYLURQPHQW�VHWXS� ��
6WDQGDORQH�WRROV� ��

+RZ�WR�LQVWDOO�9LUWXDO%R[�DQG�8EXQWX� ��
'RZQORDGLQJ�9LUWXDO%R[� ��
&UHDWLQJ�WKH�YLUWXDO�PDFKLQH� ��

6XPPDU\� ��
&KDSWHU����7KH�526�$UFKLWHFWXUH�ZLWK�([DPSOHV� ��
8QGHUVWDQGLQJ�WKH�526�)LOHV\VWHP�OHYHO� ��
3DFNDJHV� ��
6WDFNV� ��
0HVVDJHV� ��
6HUYLFHV� ��

8QGHUVWDQGLQJ�WKH�526�&RPSXWDWLRQ�*UDSK�OHYHO� ��
1RGHV� ��
7RSLFV� ��
6HUYLFHV� ��

Table of Contents

[ii]

0HVVDJHV� ��
%DJV� ��
0DVWHU� ��
3DUDPHWHU�6HUYHU� ��

8QGHUVWDQGLQJ�WKH�526�&RPPXQLW\�OHYHO� ��
6RPH�WXWRULDOV�WR�SUDFWLFH�ZLWK�526� ��
1DYLJDWLQJ�WKURXJK�WKH�526�¿OHV\VWHP� ��
&UHDWLQJ�RXU�RZQ�ZRUNVSDFH� ��
&UHDWLQJ�DQ�526�SDFNDJH� ��
%XLOGLQJ�DQ�526�SDFNDJH� ��
3OD\LQJ�ZLWK�526�QRGHV� ��
/HDUQLQJ�KRZ�WR�LQWHUDFW�ZLWK�WRSLFV� ��
/HDUQLQJ�KRZ�WR�XVH�VHUYLFHV� ��
8VLQJ�WKH�3DUDPHWHU�6HUYHU� ��
&UHDWLQJ�QRGHV� ��
%XLOGLQJ�WKH�QRGH� ��
&UHDWLQJ�PVJ�DQG�VUY�¿OHV� ��
8VLQJ�WKH�QHZ�VUY�DQG�PVJ�¿OHV� ��

6XPPDU\� ��
&KDSWHU����'HEXJJLQJ�DQG�9LVXDOL]DWLRQ� ��
'HEXJJLQJ�526�QRGHV� ��
8VLQJ�WKH�*'%�GHEXJJHU�ZLWK�526�QRGHV� ��
$WWDFKLQJ�D�QRGH�WR�*'%�ZKLOH�ODXQFKLQJ�526� ��
(QDEOLQJ�FRUH�GXPSV�IRU�526�QRGHV� ��

'HEXJJLQJ�PHVVDJHV� ��
2XWSXWWLQJ�D�GHEXJ�PHVVDJH� ��
6HWWLQJ�WKH�GHEXJ�PHVVDJH�OHYHO� ��
&RQ¿JXULQJ�WKH�GHEXJJLQJ�OHYHO�RI�D�SDUWLFXODU�QRGH� ��
*LYLQJ�QDPHV�WR�PHVVDJHV� ��
&RQGLWLRQDO�DQG�¿OWHUHG�PHVVDJHV� ��
0RUH�PHVVDJHV�±�RQFH��WKURWWOH��DQG�FRPELQDWLRQV� ��
8VLQJ�URVFRQVROH�DQG�U[FRQVROH�WR�PRGLI\�WKH�GHEXJJLQJ�OHYHO�RQ�WKH�À\� ��

,QVSHFWLQJ�ZKDW�LV�JRLQJ�RQ� ��
/LVWLQJ�QRGHV��WRSLFV��DQG�VHUYLFHV� ��
,QVSHFWLQJ�WKH�QRGH
V�JUDSK�RQOLQH�ZLWK�U[JUDSK� ��

:KHQ�VRPHWKLQJ�ZHLUG�KDSSHQV�±�URVZWI�� ��
3ORWWLQJ�VFDODU�GDWD� ��
&UHDWLQJ�D�WLPH�VHULHV�SORW�ZLWK�U[SORW� ��
2WKHU�SORWWLQJ�XWLOLWLHV�±�U[WRROV� ��

Table of Contents

[iii]

9LVXDOL]DWLRQ�RI�LPDJHV� ��
9LVXDOL]LQJ�D�VLQJOH�LPDJH� ��
)LUH:LUH�FDPHUDV� ��
:RUNLQJ�ZLWK�VWHUHR�YLVLRQ� ��

�'�YLVXDOL]DWLRQ� ��
9LVXDOL]LQJ�GDWD�RQ�D��'�ZRUOG�XVLQJ�UYL]� ��
7KH�UHODWLRQVKLS�EHWZHHQ�WRSLFV�DQG�IUDPHV� ��
9LVXDOL]LQJ�IUDPH�WUDQVIRUPDWLRQV� ��

6DYLQJ�DQG�SOD\LQJ�EDFN�GDWD� ��
:KDW�LV�D�EDJ�¿OH"� ��
5HFRUGLQJ�GDWD�LQ�D�EDJ�¿OH�ZLWK�URVEDJ� ��
3OD\LQJ�EDFN�D�EDJ�¿OH� ��
,QVSHFWLQJ�DOO�WKH�WRSLFV�DQG�PHVVDJHV�LQ�D�EDJ�¿OH�XVLQJ�U[EDJ� ���

UTW�SOXJLQV�YHUVXV�U[�DSSOLFDWLRQV� ���
6XPPDU\� ���

&KDSWHU����8VLQJ�6HQVRUV�DQG�$FWXDWRUV�ZLWK�526� ���
8VLQJ�D�MR\VWLFN�RU�JDPHSDG� ���
+RZ�GRHV�MR\BQRGH�VHQG�MR\VWLFN�PRYHPHQWV"� ���
8VLQJ�MR\VWLFN�GDWD�WR�PRYH�D�WXUWOH�LQ�WXUWOHVLP� ���

8VLQJ�D�ODVHU�UDQJH¿QGHU�±�+RNX\R�85*���O[� ���
8QGHUVWDQGLQJ�KRZ�WKH�ODVHU�VHQGV�GDWD�LQ�526� ���
$FFHVVLQJ�WKH�ODVHU�GDWD�DQG�PRGLI\LQJ�LW� ���
&UHDWLQJ�D�ODXQFK�¿OH� ���

8VLQJ�WKH�.LQHFW�VHQVRU�WR�YLHZ�LQ��'� ���
+RZ�GRHV�.LQHFW�VHQG�GDWD�IURP�WKH�VHQVRUV�DQG�KRZ�WR�VHH�LW"� ���
&UHDWLQJ�DQ�H[DPSOH�WR�XVH�.LQHFW� ���

8VLQJ�VHUYRPRWRUV�±�'\QDPL[HO� ���
+RZ�GRHV�'\QDPL[HO�VHQG�DQG�UHFHLYH�FRPPDQGV�IRU�WKH�PRYHPHQWV"� ���
&UHDWLQJ�DQ�H[DPSOH�WR�XVH�WKH�VHUYRPRWRU� ���

8VLQJ�$UGXLQR�WR�DGG�PRUH�VHQVRUV�DQG�DFWXDWRUV� ���
&UHDWLQJ�DQ�H[DPSOH�WR�XVH�$UGXLQR� ���

8VLQJ�WKH�,08�±�;VHQV�07L� ���
+RZ�GRHV�;VHQV�VHQG�GDWD�LQ�526"� ���
&UHDWLQJ�DQ�H[DPSOH�WR�XVH�;VHQV� ���

8VLQJ�D�ORZ�FRVW�,08�±����GHJUHHV�RI�IUHHGRP� ���
'RZQORDGLQJ�WKH�OLEUDU\�IRU�WKH�DFFHOHURPHWHU� ���
3URJUDPPLQJ�$UGXLQR�1DQR�DQG�WKH���'2)�VHQVRU� ���
&UHDWLQJ�D�526�QRGH�WR�XVH�GDWD�IURP�WKH���'2)�VHQVRU� ���

6XPPDU\� ���

Table of Contents

[iv]

&KDSWHU�����'�0RGHOLQJ�DQG�6LPXODWLRQ� ���
$��'�PRGHO�RI�RXU�URERW�LQ�526� ���
&UHDWLQJ�RXU�¿UVW�85')�¿OH� ���
([SODLQLQJ�WKH�¿OH�IRUPDW� ���
:DWFKLQJ�WKH��'�PRGHO�RQ�UYL]� ���
/RDGLQJ�PHVKHV�WR�RXU�PRGHOV� ���
0DNLQJ�RXU�URERW�PRGHO�PRYDEOH� ���
3K\VLFDO�DQG�FROOLVLRQ�SURSHUWLHV� ���

;DFUR�±�D�EHWWHU�ZD\�WR�ZULWH�RXU�URERW�PRGHOV� ���
8VLQJ�FRQVWDQWV� ���
8VLQJ�PDWK� ���
8VLQJ�PDFURV� ���
0RYLQJ�WKH�URERW�ZLWK�FRGH� ���
�'�PRGHOLQJ�ZLWK�6NHWFK8S� ���

6LPXODWLRQ�LQ�526� ���
8VLQJ�RXU�85')��'�PRGHO�LQ�*D]HER� ���
$GGLQJ�VHQVRUV�WR�*D]HER� ���
/RDGLQJ�DQG�XVLQJ�D�PDS�LQ�*D]HER� ���
0RYLQJ�WKH�URERW�LQ�*D]HER� ���

6XPPDU\� ���
&KDSWHU����&RPSXWHU�9LVLRQ� ���
&RQQHFWLQJ�DQG�UXQQLQJ�WKH�FDPHUD� ���
)LUH:LUH�,(((�����FDPHUDV� ���
86%�FDPHUDV� ���

0DNLQJ�\RXU�RZQ�86%�FDPHUD�GULYHU�ZLWK�2SHQ&9� ���
&UHDWLQJ�WKH�86%�FDPHUD�GULYHU�SDFNDJH� ���
8VLQJ�WKH�,PDJH7UDQVSRUW�$3,�WR�SXEOLVK�WKH�FDPHUD�IUDPHV� ���
'HDOLQJ�ZLWK�2SHQ&9�DQG�526�LPDJHV�XVLQJ�FYBEULGJH� ���
3XEOLVKLQJ�LPDJHV�ZLWK�,PDJH7UDQVSRUW� ���
8VLQJ�2SHQ&9�LQ�526� ���
9LVXDOL]LQJ�WKH�FDPHUD�LQSXW�LPDJHV� ���

+RZ�WR�FDOLEUDWH�WKH�FDPHUD� ���
6WHUHR�FDOLEUDWLRQ� ���

7KH�526�LPDJH�SLSHOLQH� ���
,PDJH�SLSHOLQH�IRU�VWHUHR�FDPHUDV� ���

526�SDFNDJHV�XVHIXO�IRU�FRPSXWHU�YLVLRQ�WDVNV� ���
3HUIRUPLQJ�YLVXDO�RGRPHWU\�ZLWK�YLVR�� ���
&DPHUD�SRVH�FDOLEUDWLRQ� ���

Table of Contents

[v]

5XQQLQJ�WKH�YLVR��RQOLQH�GHPR� ���
5XQQLQJ�YLVR��ZLWK�RXU�ORZ�FRVW�VWHUHR�FDPHUD� ���

6XPPDU\� ���
&KDSWHU����1DYLJDWLRQ�6WDFN�±�5RERW�6HWXSV� ���
7KH�QDYLJDWLRQ�VWDFN�LQ�526� ���
&UHDWLQJ�WUDQVIRUPV� ���
&UHDWLQJ�D�EURDGFDVWHU� ���
&UHDWLQJ�D�OLVWHQHU� ���
:DWFKLQJ�WKH�WUDQVIRUPDWLRQ�WUHH� ���

3XEOLVKLQJ�VHQVRU�LQIRUPDWLRQ� ���
&UHDWLQJ�WKH�ODVHU�QRGH� ���

3XEOLVKLQJ�RGRPHWU\�LQIRUPDWLRQ� ���
+RZ�*D]HER�FUHDWHV�WKH�RGRPHWU\� ���
&UHDWLQJ�RXU�RZQ�RGRPHWU\� ���

&UHDWLQJ�D�EDVH�FRQWUROOHU� ���
8VLQJ�*D]HER�WR�FUHDWH�WKH�RGRPHWU\� ���
&UHDWLQJ�RXU�EDVH�FRQWUROOHU� ���

&UHDWLQJ�D�PDS�ZLWK�526� ���
6DYLQJ�WKH�PDS�XVLQJ�PDSBVHUYHU� ���
/RDGLQJ�WKH�PDS�XVLQJ�PDSBVHUYHU� ���

6XPPDU\� ���
&KDSWHU����1DYLJDWLRQ�6WDFN�±�%H\RQG�6HWXSV� ���
&UHDWLQJ�D�SDFNDJH� ���
&UHDWLQJ�D�URERW�FRQ¿JXUDWLRQ� ���
&RQ¿JXULQJ�WKH�FRVWPDSV��JOREDOBFRVWPDS��DQG��ORFDOBFRVWPDS�� ���
&RQ¿JXULQJ�WKH�FRPPRQ�SDUDPHWHUV� ���
&RQ¿JXULQJ�WKH�JOREDO�FRVWPDS� ���
&RQ¿JXULQJ�WKH�ORFDO�FRVWPDS� ���

%DVH�ORFDO�SODQQHU�FRQ¿JXUDWLRQ� ���
&UHDWLQJ�D�ODXQFK�¿OH�IRU�WKH�QDYLJDWLRQ�VWDFN� ���
6HWWLQJ�XS�UYL]�IRU�WKH�QDYLJDWLRQ�VWDFN� ���
�'�SRVH�HVWLPDWH� ���
�'�QDY�JRDO� ���
6WDWLF�PDS� ���
3DUWLFOH�FORXG� ���
5RERW�IRRWSULQW� ���
2EVWDFOHV� ���
,QÀDWHG�REVWDFOHV� ���

Table of Contents

[vi]

*OREDO�SODQ� ���
/RFDO�SODQ� ���
3ODQQHU�SODQ� ���
&XUUHQW�JRDO� ���

$GDSWLYH�0RQWH�&DUOR�/RFDOL]DWLRQ��$0&/�� ���
$YRLGLQJ�REVWDFOHV� ���
6HQGLQJ�JRDOV� ���
6XPPDU\� ���

&KDSWHU����&RPELQLQJ�(YHU\WKLQJ�±�/HDUQ�E\�'RLQJ� ���
5((0�±�WKH�KXPDQRLG�RI�3$/�5RERWLFV� ���
,QVWDOOLQJ�5((0�IURP�WKH�RI¿FLDO�UHSRVLWRU\� ���
5XQQLQJ�5((0�XVLQJ�WKH�*D]HER�VLPXODWRU� ���

35��±�WKH�:LOORZ�*DUDJH�URERW� ���
,QVWDOOLQJ�WKH�35��VLPXODWRU� ���
5XQQLQJ�35��LQ�VLPXODWLRQ� ���
/RFDOL]DWLRQ�DQG�PDSSLQJ� ���
5XQQLQJ�WKH�GHPRV�RI�WKH�35��VLPXODWRU� ���

5RERQDXW���±�WKH�GH[WHURXV�KXPDQRLG�RI�1$6$� ���
,QVWDOOLQJ�WKH�5RERQDXW���IURP�WKH�VRXUFHV� ���
5XQQLQJ�5RERQDXW���LQ�WKH�,66�¿[HG�SHGHVWDO� ���
&RQWUROOLQJ�WKH�5RERQDXW���DUPV� ���
&RQWUROOLQJ�WKH�URERW�HDVLO\�ZLWK�LQWHUDFWLYH�PDUNHUV� ���
*LYLQJ�OHJV�WR�5RERQDXW��� ���
/RDGLQJ�WKH�,66�HQYLURQPHQW� ���

+XVN\�±�WKH�URYHU�RI�&OHDUSDWK�5RERWLFV� ���
,QVWDOOLQJ�WKH�+XVN\�VLPXODWRU� ���
5XQQLQJ�+XVN\�RQ�VLPXODWLRQ� ���

7XUWOH%RW�±�WKH�ORZ�FRVW�PRELOH�URERW� ���
,QVWDOOLQJ�WKH�7XUWOH%RW�VLPXODWLRQ� ���
5XQQLQJ�7XUWOH%RW�RQ�VLPXODWLRQ� ���

6XPPDU\� ���
,QGH[� ���

Preface
Learning ROS for Robotics Programming gives you a comprehensive review of ROS
tools. ROS is the Robot Operating System framework, which is used nowadays by
hundreds of research groups and companies in the robotics industry. But it is also
the painless entry point to robotics for nonprofessional people. You will see how
to install ROS, start playing with its basic tools, and you will end up working with
state-of-the-art computer vision and navigation tools.

The content of the book can be followed without any special devices, and each
chapter comes with a series of source code examples and tutorials that you can
run on your own computer. This is the only thing you need to follow in the book.
However, we also show you how to work with hardware, so that you can connect
your algorithms with the real world. Special care has been taken in choosing
devices which are affordable for amateur users, but at the same time the most
typical sensors or actuators in robotics research are covered.

Finally, the potential of ROS is illustrated with the ability to work with whole
robots in a simulated environment. You will learn how to create your own robot
and integrate it with the powerful navigation stack. Moreover, you will be able to
run everything in simulation, using the Gazebo simulator. We will end the book
by providing a list of real robots available for simulation in ROS. At the end of the
book, you will see that you can work directly with them and understand what is
going on under the hood.

Preface

[���]

What this book covers
Chapter 1, Getting Started with ROS, shows the easiest way you must follow in
order to have a working installation of ROS. You will see how to install different
distributions of ROS, and you will use ROS Fuerte in the rest of the book. How to
make an installation from Debian packages or compiling the sources, as well as
making installations in virtual machines, have been described in this chapter.

Chapter 2, The ROS Architecture with Examples, is concerned with the concepts and tools
provided by the ROS framework. We will introduce you to nodes, topics, and services,
and you will also learn how to use them. Through a series of examples, we will
illustrate how to debug a node or visualize the messages published through a topic.

Chapter 3, Debugging and Visualization, goes a step further in order to show you
powerful tools for debugging your nodes and visualize the information that goes
through the node's graph along with the topics. ROS provides a logging API which
allows you to diagnose node problems easily. In fact, we will see some powerful
graphical tools such as rxconsole and rxgraph, as well as visualization interfaces
such as rxplot and rviz. Finally, this chapter explains how to record and playback
messages using rosbag and rxbag.

Chapter 4, Using Sensors and Actuators with ROS, literally connects ROS with the
real world. This chapter goes through a number of common sensors and actuators
that are supported in ROS, such as range lasers, servo motors, cameras, RGB-D
sensors, and much more. Moreover, we explain how to use embedded systems
with microcontrollers, similar to the widely known Arduino boards.

Chapter 5, 3D Modeling and Simulation��FRQVWLWXWHV�RQH�RI�WKH�ÀUVW�VWHSV�LQ�RUGHU�WR�
implement our own robot in ROS. It shows you how to model a robot from scratch
and run it in simulation using the Gazebo simulator. This will later allow you to use
the whole navigation stack provided by ROS and other tools.

Chapter 6, Computer Vision, shows the support for cameras and computer vision tasks
in ROS. This chapter starts with drivers available for FireWire and USB cameras, so
that you can connect them to your computer and capture images. You will then be
able to calibrate your camera using ROS calibration tools. Later, you will be able to use
the image pipeline, which is explained in detail. Then, you will see how to use several
APIs for vision and integrate OpenCV. Finally, the installation and usage of a visual
odometry software is described.

Chapter 7, Navigation Stack – Robot Setups��LV�WKH�ÀUVW�RI�WZR�FKDSWHUV�FRQFHUQHG�ZLWK�
WKH�526�QDYLJDWLRQ�VWDFN��7KLV�FKDSWHU�GHVFULEHV�KRZ�WR�FRQÀJXUH�\RXU�URERW�VR�
that it can be used with the navigation stack. In the same way, the stack is explained,
along with several examples.

Preface

[���]

Chapter 8, Navigation Stack – Beyond Setups, continues the discussion of the previous
chapter by showing how we can effectively make our robot navigate autonomously. It
will use the navigation stack intensively for that. This chapter shows the great potential
of ROS using the Gazebo simulator and rviz to create a virtual environment in which
we can build a map, localize our robot, and do path planning with obstacle avoidance.

Chapter 9, Combining Everything – Learn by Doing, builds from the previous chapters
and shows a number of robots which are supported in ROS using the Gazebo
simulator. In this chapter you will see how to run these robots in simulation and
perform several of the tasks learned in the rest of the book, especially those related
to the navigation stack.

What you need for this book
This book was written with the intention that almost everybody can follow it and
run the source code examples provided with it. Basically, you need a computer with a
/LQX[�GLVWULEXWLRQ��$OWKRXJK�DQ\�/LQX[�GLVWULEXWLRQ�VKRXOG�EH�ÀQH��LW�LV�UHFRPPHQGHG�
that you use a recent version of Ubuntu. Then you will use ROS Fuerte, which is
installed according to the instructions given in Chapter 1, Getting Started with ROS.
For this distribution of ROS, you will need a version of Ubuntu prior to 12.10
because since this version Fuerte is no longer supported.

Regarding the hardware requirements of your computer, in general any computer
or laptop is enough. However, it is advisable to use a dedicated graphic card in
order to run the Gazebo simulator. Also, it will be good to have a good number
of peripherals, so that you can connect several sensors and actuators, including
cameras and Arduino boards.

You will also need Git (the git-core Debian package) in order to clone the repository
with the source code provided with this book. Similarly, you are expected to have
a basic knowledge of the Bash command line, GNU/Linux tools, and some C/C++
programming skills.

Who this book is for
This book is targeted at all robotics developers, from amateurs to professionals. It
covers all the aspects involved in a whole robotic system and shows how ROS helps
with the task of making a robot really autonomous. Anyone who is learning robotics
DQG�KDV�KHDUG�DERXW�526�EXW�KDV�QHYHU�WULHG�LW�ZLOO�EHQHÀW�IURP�WKLV�ERRN��$OVR��526�
beginners will learn advance concepts and tools of this framework. Indeed, even
regular users may learn something new from some particular chapters. Certainly,
RQO\�WKH�ÀUVW�WKUHH�FKDSWHUV�DUH�LQWHQGHG�IRU�QHZ�XVHUV��VR�WKRVH�ZKR�DOUHDG\�XVH�
ROS may skip these ones and go directly to the rest.

Preface

[4]

Conventions
,Q�WKLV�ERRN��\RX�ZLOO�ÀQG�D�QXPEHU�RI�VW\OHV�RI�WH[W�WKDW�GLVWLQJXLVK�EHWZHHQ�
different kinds of information. Here are some examples of these styles, and an
explanation of their meanings.

Code words in text are shown as follows: "The *-ros-pkg contributed packages
are licensed under a variety of open source licenses."

A block of code is set as follows:

<package>
 <description brief="short description">
 long description,
 </description>
 <author>Aaron Martinez, Enrique Fernandez</author>
 <license>BSD</license>
 <url>http://example.com/</url>

 <depend package="roscpp"/>
 <depend package="common"/>
 <depend package="otherPackage"/>
 <versioncontrol type="svn" url="https://urlofpackage/trunk"/>
 <export>
 <cpp cflags="-I${prefix}/include" lflags="-L${prefix}/lib -lros"/>
</package>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"
 launch-prefix="xterm -e gdb --args"/>
</launch>

Any command-line input or output is written as follows:

$ rosrun book_tutorials tutorialX _param:=9.0

New terms and important words are shown in bold. Words that you see on the screen,
in menus, or dialog boxes for example, appear in the text like this: "We must have
clicked on the Play button at least once."

Preface

[���]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

&XVWRPHU�VXSSRUW
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

'RZQORDGLQJ�WKH�H[DPSOH�FRGH
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�SXUFKDVHG�
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�
https://github.com/AaronMR/Learning_ROS_for_Robotics_Programming.

'RZQORDGLQJ�WKH�FRORU�LPDJHV�RI�WKLV�ERRN
:H�DOVR�SURYLGH�\RX�D�3')�ÀOH�WKDW�KDV�FRORU�LPDJHV�RI�WKH�VFUHHQVKRWV�GLDJUDPV�
used in this book. The color images will help you better understand the changes in
WKH�RXWSXW��<RX�FDQ�GRZQORDG�WKLV�ÀOH�IURP�http://www.packtpub.com/sites/
default/files/downloads/1448OS_Graphics.pdf.

Preface

[���]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
GR�KDSSHQ��,I�\RX�ÀQG�D�PLVWDNH�LQ�RQH�RI�RXU�ERRNV³PD\EH�D�PLVWDNH�LQ�WKH�WH[W�RU�
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
ERRN��,I�\RX�ÀQG�DQ\�HUUDWD��SOHDVH�UHSRUW�WKHP�E\�YLVLWLQJ�http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
DQG�HQWHULQJ�WKH�GHWDLOV�RI�\RXU�HUUDWD��2QFH�\RXU�HUUDWD�DUH�YHULÀHG��\RXU�VXEPLVVLRQ�
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with ROS
:HOFRPH�WR�WKH�ÀUVW�FKDSWHU�RI�WKLV�ERRN�ZKHUH�\RX�ZLOO�OHDUQ�KRZ�WR�LQVWDOO�526��
the new standard software framework in robotics. With ROS, you will start to
program and control your robots the easy way using tons of examples and source
code that will show you how to use sensors and devices or add new functionalities
to your robot, such as autonomous navigation and visual perception. Thanks to
the open source motto and the community that is developing the state-of-the-art
algorithms and providing new functionalities, ROS is growing every day.

In this book you will learn the following:

�� Installing the ROS framework on a version of Ubuntu
�� Learning the basic operation of ROS
�� Debugging and visualizing the data
�� Programming your robot using this framework
�� Creating a 3D model to use it in the simulator
�� Using the navigation stack to make your robot autonomous

In this chapter we are going to install a full version of ROS in Ubuntu. We will
use Ubuntu because it is fully supported by and recommended for ROS. However,
you can use a different operating system instead of Ubuntu, but in these operative
systems, ROS is still experimental and could have some errors. So, for this reason,
we recommend you to use Ubuntu while you follow the samples in this book.

Before starting with the installation, we are going to learn the origin of ROS and
its history.

Getting Started with ROS

[���]

Robot Operating System (ROS) is a framework that is widely used in robotics. The
philosophy is to make a piece of software that could work in other robots by making
little changes in the code. What we get with this idea is to create functionalities that
can be shared and used in other robots without much effort so that we do not reinvent
the wheel.

526�ZDV�RULJLQDOO\�GHYHORSHG�LQ������E\�WKH�6WDQIRUG�$UWLÀFLDO�,QWHOOLJHQFH�
Laboratory (SAIL) with the support of the Stanford AI Robot project. As of 2008,
development continues primarily at Willow Garage, a robotics research institute,
with more than 20 institutions collaborating within a federated development model.

A lot of research institutions have started to develop projects in ROS by adding
hardware and sharing their code samples. Also, the companies have started to adapt
their products to be used in ROS. In the following image, you can see some fully
supported platforms. Normally, these platforms are published with a lot of code,
examples, and simulators to permit the developers to start their work easily.

The sensors and actuators used in robotics have also been adapted to be used with
ROS. Every day an increasing number of devices are supported by this framework.

ROS provides standard operating system facilities such as hardware abstraction,
low-level device control, implementation of commonly used functionalities,
message passing between processes, and package management. It is based on
graph architecture with a centralized topology where processing takes place in
nodes that may receive or post, such as multiplex sensor, control, state, planning,
actuator, and so on. The library is geared towards a Unix-like system (Ubuntu
Linux is listed as supported while other variants such as Fedora and Mac OS X
are considered experimental).

Chapter 1

[���]

The *-ros-pkg package is a community repository for developing high-level
libraries easily. Many of the capabilities frequently associated with ROS, such
as the navigation library and the rviz visualizer, are developed in this repository.
These libraries give a powerful set of tools to work with ROS easily, knowing
what is happening every time. Of these, visualization, simulators, and debugging
tools are the most important ones.

ROS is released under the terms of the BSD (Berkeley Software Distribution) license
and is an open source software. It is free for commercial and research use. The *-ros-
pkg contributed packages are licensed under a variety of open source licenses.

ROS promotes code reutilization so that the robotics developers and scientists do
not have to reinvent the wheel all the time. With ROS, you can do this and more.
You can take the code from the repositories, improve it, and share it again.

ROS has released some versions, the latest one being Groovy. In this book, we are
going to use Fuerte because it is a stable version, and some tutorials and examples
used in this book don't work in the Groovy version.

Getting Started with ROS

[10]

Now we are going to show you how to install ROS Electric and Fuerte. Although
in this book we use Fuerte, you may need to install the Electric version to use some
code that works only in this version or you may need Electric because your robot
doesn't have the latest version of Ubuntu.

As we said before, the operating system used in the book is Ubuntu and we are
going to use it in all tutorials. If you are using another operating system and you
want to follow the book, the best option is to install a virtual machine with an
Ubuntu copy. Later, we will explain how to install a virtual machine in order to
use ROS in it.

Anyway, if you want to try installing it in an operating system other than Ubuntu,
\RX�FDQ�ÀQG�WKH�UHTXLUHG�LQVWUXFWLRQV�LQ�WKH�IROORZLQJ�OLQN��http://wiki.ros.org/
fuerte/Installation.

Installing ROS Electric – using
repositories
There are a few methods available to install ROS. You can do it directly using
repositories, the way we will do�QRZ��RU�\RX�FDQ�XVH�WKH�FRGH�ÀOHV�DQG�FRPSLOH�
it. It is more secure to do it using repositories because you have the certainty
that it will work.

In this section, you will see the steps to install ROS Electric on your computer.
7KH�LQVWDOODWLRQ�SURFHVV�KDV�EHHQ�H[SODLQHG�LQ�GHWDLO�LQ�WKH�RIÀFLDO�526�SDJH��
http://wiki.ros.org/electric/Installation.

We assume that you know what an Ubuntu repository is and how to manage it.
If you have any queries, check the following link to get more information:
https://help.ubuntu.com/community/Repositories/Ubuntu.

%HIRUH�VWDUWLQJ�ZLWK�WKH�LQVWDOODWLRQ��ZH�QHHG�WR�FRQÀJXUH�RXU�UHSRVLWRULHV��
To do this, the repositories need to allow restricted, universal, and multiversal
repositories. To check whether your version of Ubuntu accepts these repositories,
click on Ubuntu Software Center in the menu on the left of your desktop.

Chapter 1

[11]

Navigate to Edit | Software Sources and you will see the following window on your
screen. Make sure that everything is selected as shown in the following screenshot:

Normally, these options are marked, so you will not have problems with this step.

Getting Started with ROS

[����]

$GGLQJ�UHSRVLWRULHV�WR�\RXU�VRXUFHV�OLVW�¿OH
In this step, you have to select your Ubuntu version. It is possible to install ROS
Electric in various versions of the operating system. You can use any of them, but
we recommend you to always use the most updated version to avoid problems:

�� $�VSHFLÀF�ZD\�WR�LQVWDOO�WKH�UHSRVLWRULHV�IRU�DQ�8EXQWX�EDVHG�GLVWUR�VXFK�
as Ubuntu Lucid Lynx (10.04) is as follows:
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu lucid
main" > /etc/apt/sources.list.d/ros-latest.list'

�� A generic way for installing any distro of Ubuntu relies on the lsb_release
command that is supported on all Linux Debian-based distro:
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu `lsb_
release -cs` main" > /etc/apt/sources.list.d/ros-latest.list'

Once you have added the correct repository, your operating system knows where to
download the programs that need to be installed on your system.

Setting up your keys
7KLV�VWHS�LV�WR�FRQÀUP�WKDW�WKH�RULJLQ�RI�WKH�FRGH�LV�FRUUHFW��DQG�QRERG\�KDV�PRGLÀHG�
the code or programs without the knowledge of the owner. Normally, when you add
a new repository, you have to add the keys of that repository so that it is added to
your system's trusted list:

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add –

We can now be sure that the code came from an authorized site.

Installation
Now we are ready to start the installation. Before we start, it would be better to
update the software to avoid problems with libraries or the wrong software version.
We do this with the following command:

$ sudo apt-get update

ROS is huge; sometimes you will install libraries and programs that you will
QHYHU�XVH��1RUPDOO\��LW�KDV�IRXU�GLIIHUHQW�LQVWDOODWLRQV�GHSHQGLQJ�RQ�WKH�ÀQDO�XVH��
for example, if you are an advanced user, you may only need basic installation for
a robot without enough space in the hard disk. For this book, we recommend the
use of full installation because it will install everything that's necessary to make
the examples and tutorials work.

Chapter 1

[����]

Don't worry if you don't know what you are installing right now, be it rviz, simulators,
or navigation. You will learn everything in the upcoming chapters:

�� The easiest (and recommended if you have enough hard disk space)
installation is known as desktop-full. It comes with ROS, the Rx tools, the rviz
visualizer (for 3D), many generic robot libraries, the simulator in 2D (such as
stage) and 3D (usually Gazebo), the navigation stack (to move, localize, do
mapping, and control arms), and also perception libraries using vision, lasers
or RGB-D cameras:
$ sudo apt-get install ros-electric-desktop-full

�� If you do not have enough disk space, or you prefer to install only a few
VWDFNV��ÀUVW�LQVWDOO�RQO\�WKH�GHVNWRS�LQVWDOODWLRQ�ÀOH��ZKLFK�FRPHV�RQO\�ZLWK�
ROS, the Rx tools, rviz, and generic robot libraries. Later, you can install the
rest of the stacks when you need them (using aptitude and looking for the
ros-electric-* stacks, for example):
$ sudo apt-get install ros-electric-desktop

�� If you only want the bare bones, install ROS-base, which is usually
recommended for the robot itself or computers without a screen or just
a TTY. It will install the ROS package with the build and communication
libraries and no GUI tools at all:
$ sudo apt-get install ros-electric-ros-base

�� Finally, along with whatever option you choose from this list, you can install
LQGLYLGXDO�VSHFLÀF�526�VWDFNV��IRU�D�JLYHQ�VWDFN�QDPH��
$ sudo apt-get install ros-electric-STACK

7KH�HQYLURQPHQW�VHWXS
Congratulations! You are in this step because you have an installed version of ROS
on your system. To start using it, the system must know where the executable or
ELQDU\�ÀOHV�DV�ZHOO�DV�RWKHU�FRPPDQGV�DUH��7R�GR�WKLV��\RX�QHHG�WR�H[HFXWH�WKH�QH[W�
script. If you install another ROS distro in addition to your existing version, you can
work with both by calling the script of the one you need every time, since this script
simply sets your environment. Here, we will use the one for ROS Electric, but just
change electric to fuerte or groovy in the following command if you want to try
other distros:

$ source /opt/ros/electric/setup.bash

Getting Started with ROS

[14]

If you type roscore in the shell, you will see that something is starting. This is the
EHVW�WHVW�WR�ÀQG�RXW�ZKHWKHU�\RX�KDYH�526�DQG�ZKHWKHU�LW�LV�LQVWDOOHG�FRUUHFWO\�

Note that if you open another shell and type roscore or any other ROS command,
it does not work. This is because it is necessary to execute the script again to
FRQÀJXUH�WKH�JOREDO�YDULDEOHV�DQG�SDWK�IRU�WKH�ORFDWLRQ�ZKHUH�526�LV�LQVWDOOHG�

It is very easy to solve this. You only need to add the script at the end of your
.bashrc�ÀOH�DQG�ZKHQ�\RX�VWDUW�D�QHZ�VKHOO��WKH�VFULSW�ZLOO�H[HFXWH�DQG�\RX�ZLOO�
KDYH�WKH�HQYLURQPHQW�FRQÀJXUHG��8VH�WKH�IROORZLQJ�FRPPDQG�WR�GR�WKLV�

$ echo "source /opt/ros/electric/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

If it happens that you have more than a single ROS distribution installed on your
system, your ~/.bashrc�ÀOH�PXVW�VRXUFH�RQO\�setup.bash of the version you are
currently using. This is because the last call will override the environment set of the
others, as we have mentioned previously, to have several distros living in the same
system and switch among them.

Installing ROS Fuerte – using repositories
In this section, we are going to install ROS Fuerte on our computer. You can have
different versions installed on the same computer without problems; you only need
to select the version that you want to use in the .bashrc�ÀOH��<RX�ZLOO�VHH�KRZ�WR�GR�
this in this section.

,I�\RX�ZDQW�WR�VHH�WKH�RIÀFLDO�SDJH�ZKHUH�WKLV�SURFHVV�LV�H[SODLQHG��\RX�FDQ�YLVLW�WKH�
following URL: http://wiki.ros.org/fuerte/Installation.

You can install ROS using two methods: using repositories and using source code.
Normal users will only need to make an installation using repositories to get a
functional installation of ROS. You can install ROS using the source code but this
process is for advanced users and we don't recommend it.

&RQ¿JXULQJ�\RXU�8EXQWX�UHSRVLWRULHV
First, you must check that your Ubuntu accepts restricted, universal, and multiversal
repositories. Refer to the Installing ROS Electric – using repositories section if you want
to see how to do it.

1RUPDOO\��8EXQWX�LV�FRQÀJXUHG�WR�DOORZ�WKHVH�UHSRVLWRULHV�DQG�\RX�ZRQ
W�KDYH�
problems with this step.

Chapter 1

[����]

6HWWLQJ�XS�\RXU�VRXUFH�OLVW�¿OH
Now we are going to add the URLs from where we can download the code. Note that
ROS Fuerte doesn't work for Maverick and Natty, so you must have Ubuntu 10.04,
11.10, or 12.04 on your computer.

)RU�WKLV�ERRN�ZH�KDYH�XVHG�8EXQWX�������DQG�LW�ZRUNV�ÀQH��$OO�WKH�H[DPSOHV�KDYH�
been checked, compiled, and executed in this version of Ubuntu.

Open a new shell and type the following command, as we did before, which should
work for any Ubuntu version you have:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu `lsb_release
-cs` main" > /etc/apt/sources.list.d/ros-latest.list'

Setting up your keys
It is important to add the key because with it we can be sure that we are
GRZQORDGLQJ�WKH�FRGH�IURP�WKH�ULJKW�SODFH�DQG�QRERG\�KDV�PRGLÀHG�LW�

If you have followed the steps to install ROS Electric, you don't need to do this
again as you have already completed this earlier; if not, add the repository using
the following command:

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add –

Installation
We are ready to install ROS Fuerte at this point. Before doing something,
it is necessary to update all the programs used by ROS. We do it to avoid
incompatibility problems.

Type the following command in a shell and wait:

$ sudo apt-get update

Depending on whether you had the system updated or not, the command will take
PRUH�RU�OHVV�WLPH�WR�ÀQLVK�

ROS has a lot of parts and installing the full system can be heavy in robots without
enough features. For this reason, you can install various versions depending on what
you want to install.

Getting Started with ROS

[����]

For this book, we are going to install the full version. This version will install all
the examples, stacks, and programs. This is a good option for us because in some
chapters of this book, we will need to use tools, and if we don't install it now, we
will have to do it later:

�� The easiest (and recommended if you have enough hard disk space)
installation is known as desktop-full. It comes with ROS, the Rx tools, the
rviz visualizer (for 3D), many generic robot libraries, the simulator in 2D
(such as stage) and 3D (usually Gazebo), the navigation stack (to move,
localize, do mapping, and control arms), and also perception libraries
using vision, lasers, or RGB-D cameras:
$ sudo apt-get install ros-fuerte-desktop-full

�� If you do not have enough disk space, or you prefer to install only a few
VWDFNV��ÀUVW�LQVWDOO�RQO\�WKH�GHVNWRS�LQVWDOODWLRQ�ÀOH��ZKLFK�FRPHV�RQO\�ZLWK�
ROS, the Rx tools, rviz, and generic robot libraries. Later, you can install the
rest of the stacks when you need them (using aptitude and looking for the
ros-electric-* stacks, for example):
$ sudo apt-get install ros-fuerte-desktop

�� If you only want the bare bones, install ROS-comm, which is usually
recommended for the robot itself or computers without a screen or just
a TTY. It will install the ROS package with the build and communication
libraries and no GUI tools at all:
$ sudo apt-get install ros-fuerte-ros-comm

�� Finally, along with whatever option you choose from the list, you can
LQVWDOO�LQGLYLGXDO�VSHFLÀF�526�VWDFNV��IRU�D�JLYHQ�VWDFN�QDPH��
$ sudo apt-get install ros-fuerte-STACK

Do not worry if you are installing things that you do not know. In the upcoming
chapters, you will learn about everything you are installing and how to use it.

When you gain experience with ROS, you can make basic installations in your robots
using only the core of ROS, using less resources, and taking only what you need.

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 1

[17]

7KH�HQYLURQPHQW�VHWXS
Now that you have installed ROS, to start using it, you must provide Ubuntu with
the path where ROS is installed. Open a new shell and type the following command:

$ roscore

roscore: command not found

You will see this message because Ubuntu does not know where to search for the
commands. To solve it, type the following command in a shell:

$ source /opt/ros/fuerte/setup.bash

Then, type the roscore command once again, and you will see the following output:

...

started roslaunch server http://localhost:45631/

ros_comm version 1.8.11

SUMMARY

========

PARAMETERS

* /rosdistro

* /rosversion

NODES

auto-starting new master

....

7KLV�PHDQV�WKDW�8EXQWX�NQRZV�ZKHUH�WR�ÀQG�WKH�FRPPDQGV�WR�UXQ�526��1RWH�WKDW�
if you open another shell and type roscore, it will not work. This is because it is
necessary to add this script within the .bashrc�ÀOH��6R��HYHU\�WLPH�\RX�VWDUW�D�QHZ�
shell, the scripts will run because .bashrc always runs when a shell runs.

Use the following commands to add the script:

$ echo "source /opt/ros/fuerte/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

Getting Started with ROS

[����]

As mentioned before, only source setup.bash for one ROS distribution. Imagine
that you had Electric and Fuerte installed on your computer, and you are using
Fuerte as the normal version. If you want to change the version used in a shell,
you only have to type the following command:

$ source /opt/ros/electric/setup.bash

If you want to use another version on a permanent basis, you must change the .bashrc
ÀOH�DQG�SXW�WKH�FRUUHFW�VFULSW�IRU�\RXU�YHUVLRQ�

Standalone tools
ROS has some tools that need to be installed after the principal installation. These
tools will help us install dependencies between programs to compile, download, and
install packages from ROS. These tools are rosinstall and rosdep. We recommend
installing them because we will use them in the upcoming chapters. To install these
tools, type the following command in a shell:

$ sudo apt-get install python-rosinstall python-rosdep

Now we have a full installation of ROS on our system. As you can see, only a few
steps are necessary to do it.

It is possible to have two or more versions of ROS installed on our computer.
Furthermore, you can install ROS on a virtual machine if you don't have Ubuntu
installed on your computer.

In the next section, we will explain how to install a virtual machine and use a drive
image with ROS. Perhaps this is the best way to get ROS for new users.

+RZ�WR�LQVWDOO�9LUWXDO%R[�DQG�8EXQWX
VirtualBox is a general-purpose, full virtualizer for x86 hardware, targeted at server,
desktop, and embedded use. VirtualBox is free and supports all the major operating
V\VWHPV�DQG�SUHWW\�PXFK�HYHU\�/LQX[�ÁDYRU�RXW�WKHUH�

As we recommend the use of Ubuntu, you perhaps don't want to change the operating
system of your computer. Tools such as VirtualBox exist for this purpose and help us
virtualize a new operating system on our computer without making any changes to
the original.

Chapter 1

[����]

In the upcoming sections, we are going to show how to install VirtualBox and a new
installation of Ubuntu. Further, with this virtual installation, you could have a clean
installation to restart your development machine if you have any problem, or to save
WKH�GHYHORSPHQW�PDFKLQH�ZLWK�DOO�WKH�VHWXS�ÀOHV�QHFHVVDU\�IRU�\RXU�URERW�

'RZQORDGLQJ�9LUWXDO%R[
7KH�ÀUVW�VWHS�LV�WR�GRZQORDG�WKH�9LUWXDO%R[�LQVWDOODWLRQ�ÀOH��$W�WKH�WLPH�RI�ZULWLQJ��
the following links had the latest versions available:

�� https://www.virtualbox.org/wiki/Downloads

�� http://download.virtualbox.org/virtualbox/4.2.0/VirtualBox-
4.2.1-80871-OSX.dmg

Once installed, you need to download the image of Ubuntu. For this tutorial, we
will use an Ubuntu copy with ROS Fuerte installed. You can download it from the
following URL: http://nootrix.com/wp-content/uploads/2012/08/ROS.ova.

<RX�FDQ�ÀQG�GLIIHUHQW�YLUWXDO�PDFKLQHV�ZLWK�SUHLQVWDOOHG�8EXQWX�DQG�526��EXW�ZH�
are going to use this version�EHFDXVH�LW�LV�UHIHUUHG�E\�WKH�RIÀFLDO�SDJH�RI�526�

&UHDWLQJ�WKH�YLUWXDO�PDFKLQH
Creating a new YLUWXDO�PDFKLQH�ZLWK�WKH�GRZQORDGHG�ÀOH�LV�YHU\�HDV\��MXVW�
follow the steps outlined in this section. Open VirtualBox and navigate to File |
Import Appliance.... Then, click on Open appliance and select the ROS.ova�ÀOH�
downloaded before.

Getting Started with ROS

[����]

,Q�WKH�QH[W�ZLQGRZ��\RX�FDQ�FRQÀJXUH�WKH�SDUDPHWHUV�IRU�WKH�QHZ�YLUWXDO�PDFKLQH��
.HHS�WKH�GHIDXOW�FRQÀJXUDWLRQ�DQG�RQO\�FKDQJH�WKH�QDPH�RI�WKH�YLUWXDO�V\VWHP��7KLV�
name helps you distinguish this virtual machine from others. Our recommendation
is to put a descriptive name; in our case, the book's name.

Click on the Import button and accept the software license agreement in the next
window. Then, you will see a progress bar. It means that VirtualBox is copying the
ÀOH�ZLWK�WKH�YLUWXDO�LPDJH�DQG�LV�FUHDWLQJ�D�QHZ�FRS\�ZLWK�WKH�QHZ�QDPH�

1RWH�WKDW�WKLV�SURFHVV�GRHVQ
W�PRGLI\�WKH�RULJLQDO�ÀOH�ROS.ova, and you could create
PRUH�YLUWXDO�PDFKLQHV�ZLWK�GLIIHUHQW�FRSLHV�IURP�WKH�RULJLQDO�ÀOH�

The process will take a few minutes depending on the speed of your computer.
:KHQ�LW�ÀQLVKHV��\RX�FDQ�VWDUW�\RXU�YLUWXDO�PDFKLQH�E\�FOLFNLQJ�RQ�WKH�Start button.
Remember to select the right machine before starting it. In our case, we have only
one machine but you could have more.

Chapter 1

[����]

Sometimes you will get the error shown in the following screenshot. It is because
your computer�GRHVQ
W�KDYH�WKH�FRUUHFW�GULYHUV�WR�XVH�86%������<RX�FDQ�À[�LW�E\�
installing Oracle VM VirtualBox Extension Pack, but you can also disable the USB
support to start using the virtual machine.

Getting Started with ROS

[����]

To disable USB support, right-click on the virtual machine and select Settings. In the
toolbar, navigate to Ports | USB and uncheck Enable USB 2.0 (EHCI) Controller.
You can now start the virtual machine again, and it should start without problems.

Once the virtual machine starts, you should see the ROS-installed Ubuntu 12.04
window on your screen as shown in the following screenshot:

Chapter 1

[����]

:KHQ�\RX�KDYH�ÀQLVKHG�WKHVH�VWHSV��\RX�ZLOO�KDYH�D�IXOO�FRS\�RI�526�)XHUWH�WKDW�
can be used in this book. You can run all the examples and stacks that we are going
to work with. Unfortunately, VirtualBox has problems while working with real
hardware, and it's possible that you can't use this copy of ROS Fuerte for the steps
outlined in Chapter 4, Using Sensors and Actuators with ROS.

6XPPDU\
In this chapter we have learned to install two different versions of ROS (Electric and
Fuerte) in Ubuntu. With these steps, you have all the necessary software installed
on your system to start working with ROS and the examples of this book. You can
install ROS using the source code as well. This option is for advanced users, and we
recommend that you use this repository only for installation; it is more common and
normally it should not give errors or problems.

It is a good idea to play with ROS and the installation on a virtual machine. This way,
if you have problems with the installation or with something, you can reinstall a new
copy of your operating system and start again.

Normally, with virtual machines, you will not have access to real hardware, such as
sensors and actuators. Anyway, you can use it for testing algorithms, for example.

In the next chapter, you will learn the architecture of ROS, some important concepts,
and some tools to interact directly with ROS.

The ROS Architecture
with Examples

Once you have installed ROS, you surely must be thinking, "OK, I have installed it,
DQG�QRZ�ZKDW"��,Q�WKLV�FKDSWHU��\RX�ZLOO�OHDUQ�WKH�VWUXFWXUH�RI�526�DQG�ZKDW�SDUWV�
it has. Furthermore, you will start to create nodes, packages, and use ROS with
examples using TurtleSim.

The ROS architecture has been designed and divided into three sections or levels
of concepts:

�� The Filesystem level
�� The Computation Graph level
�� The Community level

7KH�ÀUVW�OHYHO�LV�WKH�)LOHV\VWHP�OHYHO��,Q�WKLV�OHYHO��D�JURXS�RI�FRQFHSWV�LV�XVHG�WR�
H[SODLQ�KRZ�526�LV�LQWHUQDOO\�IRUPHG��WKH�IROGHU�VWUXFWXUH��DQG�WKH�PLQLPDO�ÀOHV�
that it needs to work.

The second level is the Computation Graph level where communication between
processes and systems happen. In this section, we will see all the concepts and
systems that ROS has to set up systems, to handle all the processes, to communicate
with more than a single computer, and so on.

The third level is the Community level where we will explain the tools and concepts
to share knowledge, algorithms, and code from any developer. This level is important
because ROS can grow quickly with great support from the community.

The ROS Architecture with Examples

[����]

8QGHUVWDQGLQJ�WKH�526�)LOHV\VWHP�OHYHO
When you start to use or develop projects with ROS, you will start to see this concept
that could sound strange in the beginning, but as you use ROS, it will begin to
become familiar to you.

Similar to an operating system, an ROS program is divided into folders, and these
IROGHUV�KDYH�VRPH�ÀOHV�WKDW�GHVFULEH�WKHLU�IXQFWLRQDOLWLHV�

�� Packages: Packages form the atomic level of ROS. A package has the
minimum structure and content to create a program within ROS. It may
KDYH�526�UXQWLPH�SURFHVVHV��QRGHV���FRQÀJXUDWLRQ�ÀOHV��DQG�VR�RQ�

�� Manifests: Manifests provide information about a package, license
information, dependencies,�FRPSLOHU�ÁDJV��DQG�VR�RQ��0DQLIHVWV�DUH�
PDQDJHG�ZLWK�D�ÀOH�FDOOHG�manifests.xml.

�� Stacks: When you gather several packages with some functionality,
you will obtain a stack. In ROS, there exists a lot of these stacks with
different uses, for example, the navigation stack.

�� Stack manifests: Stack manifests (stack.xml) provide data about a stack,
including its license information and its dependencies on other stacks.

�� Message (msg) types: A message is the information that a process sends
to other processes. ROS has a lot of standard types of messages. Message
descriptions are stored in my_package/msg/MyMessageType.msg.

�� Service (srv) types: Service descriptions, stored in my_package/srv/
MyServiceType.srv��GHÀQH�WKH�UHTXHVW�DQG�UHVSRQVH�GDWD�VWUXFWXUHV�
for services in ROS.

Chapter 2

[����]

In the following screenshot, you can see the contents of the chapter3 folder of this
book. What you see is a package where the examples of code for the chapter are
stored along with the manifest, and much more. The chapter3 folder does not have
messages and services, but if it had, you would have seen the srv and msg folders.

Packages
Usually, when we�WDON�DERXW�SDFNDJHV��ZH�UHIHU�WR�D�W\SLFDO�VWUXFWXUH�RI�ÀOHV�DQG�
folders. This structure looks as follows:

�� bin/: This is the folder where our compiled and linked programs are
stored after building/making them.

�� include/package_name/: This directory includes the headers of libraries
that you would need. Do not forget to export the manifest, since they are
meant to be provided for other packages.

�� msg/: If you develop nonstandard messages, put them here.
�� scripts/: These are executable scripts that can be Bash, Python, or any

other script.
�� src/: This is where the source�ÀOHV�RI�\RXU�SURJUDPV�DUH�SUHVHQW��<RX�PD\�

create a folder for nodes and nodelets, or organize it as you want.
�� srv/: This represents the service (srv) types.
�� CMakeLists.txt: This is the &0DNH�EXLOG�ÀOH�
�� manifest.xml: This is the package�PDQLIHVW�ÀOH�

The ROS Architecture with Examples

[����]

To create, modify, or work with packages, ROS gives us some tools for assistance:

�� rospack: This command is used WR�JHW�LQIRUPDWLRQ�RU�ÀQG�SDFNDJHV�LQ�
the system

�� roscreate-pkg: When you want to create a new package, use this command
�� rosmake: This command is used to compile a package
�� rosdep: This command installs system dependencies of a package
�� rxdeps: This command is used if you want to see the package dependencies

as a graph

7R�PRYH�EHWZHHQ�WKH�SDFNDJHV�DQG�WKHLU�IROGHUV�DQG�ÀOHV��526�JLYHV�XV�D�YHU\�XVHIXO�
package called rosbash, which provides some commands very similar to the Linux
commands. The following are a few examples:

�� roscd: This command helps to change the directory; this is similar to the
cd command in Linux

�� rosed: This command LV�XVHG�WR�HGLW�D�ÀOH
�� roscp: This command�LV�XVHG�WR�FRS\�D�ÀOH�IURP�VRPH�SDFNDJH
�� rosd: This command lists the directories of a package
�� rosls: This command lists WKH�ÀOHV�IURP�D�SDFNDJH��WKLV�LV�VLPLODU�WR�WKH�

ls command in Linux

7KH�ÀOH�manifest.xml must be in a package, and it is used to specify information
DERXW�WKH�SDFNDJH��,I�\RX�ÀQG�WKLV�ÀOH�LQVLGH�D�IROGHU��SUREDEO\�WKLV�IROGHU�LV�D�SDFNDJH�

If you open a manifest.xml�ÀOH��\RX�ZLOO�VHH�LQIRUPDWLRQ�DERXW�WKH�QDPH�RI�WKH�
package, dependencies, and so on. All of this is to make the installation and the
distribution of these packages easy.

7ZR�W\SLFDO�WDJV�WKDW�DUH�XVHG�LQ�WKH�PDQLIHVW�ÀOH�DUH�<depend> and <export>.
The <depend> tag shows which packages must be installed before installing the
current package. This is because the new package uses some functionality of the
other package. The <export> tag tells the system�ZKDW�ÁDJV�QHHG�WR�EH�XVHG�WR�
compile the package, what headers are to be included, and so on.

7KH�IROORZLQJ�FRGH�VQLSSHW�LV�DQ�H[DPSOH�RI�WKLV�ÀOH�

<package>
 <description brief="short description">
 long description,
 </description>
 <author>Aaron Martinez, Enrique Fernandez</author>
 <license>BSD</license>
 <url>http://example.com/</url>

Chapter 2

[����]

 <depend package="roscpp"/>
 <depend package="common"/>
 <depend package="otherPackage"/>
 <versioncontrol type="svn" url="https://urlofpackage/trunk"/>
 <export>
 <cpp cflags="-I${prefix}/include" lflags="-L${prefix}/lib -lros"/>
</package>

Stacks
Packages in ROS are organized into ROS stacks. While the goal of packages is to
create minimal collections of code for easy re-use, the goal of stacks is to simplify
the process of code sharing.

A stack needs a basic VWUXFWXUH�RI�ÀOHV�DQG�IROGHUV��<RX�FDQ�FUHDWH�LW�PDQXDOO\��
but ROS provides us with the command tool roscreate-stack for this process.

7KH�IROORZLQJ�WKUHH�ÀOHV�DUH�QHFHVVDU\�IRU�D�VWDFN��CMakeList.txt, Makefile, and
stack.xml. If you see stack.xml in a folder, you can be sure that this is a stack.

7KH�IROORZLQJ�FRGH�VQLSSHW�LV�DQ�H[DPSOH�RI�WKLV�ÀOH�

<stack>
 <description brief="Sample_Stack">Sample_Stack1</description>
 <author>Maintained by AaronMR</author>
 <license>BSD,LGPL,proprietary</license>
 <review status="unreviewed" notes=""/>
 <url>http://someurl.blablabla</url>
 <depend stack="common_msgs" /> <!-- nav_msgs, sensor_msgs, geometry_
msgs -->
 <depend stack="ros_tutorials" /> <!-- turtlesim -->
</stack>

Messages
526�XVHV�D�VLPSOLÀHG�PHVVDJH�GHVFULSWLRQ�ODQJXDJH�IRU�GHVFULELQJ�WKH�GDWD�YDOXHV�
that ROS nodes publish. With this description, ROS can generate the right source
code for these types of messages in several programming languages.

526�KDV�D�ORW�RI�PHVVDJHV�SUHGHÀQHG��EXW�LI�\RX�GHYHORS�D�QHZ�PHVVDJH��LW�ZLOO�
be in the msg/�IROGHU�RI�\RXU�SDFNDJH��,QVLGH�WKDW�IROGHU��VRPH�ÀOHV�ZLWK�WKH�.msg
H[WHQVLRQ�GHÀQH�WKH�PHVVDJHV�

The ROS Architecture with Examples

[����]

$�PHVVDJH�PXVW�KDYH�WZR�SULQFLSDO�SDUWV��ÀHOGV�DQG�FRQVWDQWV��)LHOGV�GHÀQH�WKH�W\SH�
of data to be transmitted in the message, for example, int32, float32, and string,
or new types that you have created before, such as type1 and type2. Constants
GHÀQH�WKH�QDPH�RI�WKH�ÀHOGV�

An example of an msg�ÀOH�LV�DV�IROORZV�

int32 id
float32 vel
string name

,Q�526��\RX�FDQ�ÀQG�D�ORW�RI�VWDQGDUG�W\SHV�WR�XVH�LQ�PHVVDJHV�DV�VKRZQ�LQ�WKH�
following table:

Primitive type Serialization C++ Python
bool Unsigned 8-bit int uint8_t bool

int8 Signed 8-bit int int8_t int

uint8 Unsigned 8-bit int uint8_t int

int16 Signed 16-bit int int16_t int

uint16 Unsigned 16-bit int uint16_t int

int32 Signed 32-bit int int32_t int

uint32 Unsigned 32-bit int uint32_t int

int64 Signed 64-bit int int64_t long

uint64 Unsigned 64-bit int uint64_t long

float32 32-bit IEEE float float float

float64 64-bit IEEE float double float

string ASCII string (4-bit) std::string string

time Secs/nsecs signed 32-
bit ints

ros::Time rospy.
Time

duration Secs/nsecs signed 32-
bit ints

ros::Duration rospy.
Duration

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 2

[����]

A special type in ROS is Header. This is used to add the timestamp, frame, and so
on. This allows messages to be numbered so that we can know who is sending the
message. Other functions can be added, which are transparent to the user but are
being handled by ROS.

The Header�W\SH�FRQWDLQV�WKH�IROORZLQJ�ÀHOGV�

uint32 seq
time stamp
string frame_id

Thanks to Header, it is possible to record the timestamp and frame of what is
happening with the robot, as we will see in the upcoming chapters.

In ROS, there exist some tools to work with messages. The tool rosmsg prints out the
PHVVDJH�GHÀQLWLRQ�LQIRUPDWLRQ�DQG�FDQ�ÀQG�WKH�VRXUFH�ÀOHV�WKDW�XVH�D�PHVVDJH�W\SH�

In the upcoming sections, we will see how to create messages with the right tools.

Services
526�XVHV�D�VLPSOLÀHG service description language for describing ROS service
types. This builds directly upon the ROS msg format to enable request/response
communication between nodes. Service descriptions are stored in .srv�ÀOHV�LQ�WKH�
srv/ subdirectory of a package.

To call a service, you need to use the package name along with the service name;
IRU�H[DPSOH��IRU�WKH�ÀOH�sample_package1/srv/sample1.srv, you will refer to it
as sample_package1/sample1.

There exist some tools that perform some functions with services. The tool rossrv
prints out service descriptions, packages that contain the .srv�ÀOHV��DQG�FDQ�ÀQG�
VRXUFH�ÀOHV�WKDW�XVH�D�VHUYLFH�W\SH�

If you want to create a service, ROS can help you with the services generator.
7KHVH�WRROV�JHQHUDWH�FRGH�IURP�DQ�LQLWLDO�VSHFLÀFDWLRQ�RI�WKH�VHUYLFH��<RX�RQO\�
need to add the line gensrv() to your CMakeLists.txt�ÀOH�

In the upcoming sections, we will learn how to create our own services.

The ROS Architecture with Examples

[����]

8QGHUVWDQGLQJ�WKH�526�&RPSXWDWLRQ�
Graph level
ROS creates a network where all the processes are connected. Any node in the system
can access this network, interact with other nodes, see the information that they are
sending, and transmit data to the network.

The basic concepts in this level are nodes, the Master, the Parameter Server, messages,
services, topics, and bags, all of which provide data to the graph in different ways:

�� Nodes: Nodes are processes where computation is done. If you want to have
a process that can interact with other nodes, you need to create a node with
this process to connect it to the ROS network. Usually, a system will have
many nodes to control different functions. You will see that it is better to
have many nodes that provide only a single functionality, rather than a large
node that makes everything in the system. Nodes are written with an ROS
client library, for example, roscpp or rospy.

�� Master: The Master provides name registration and lookup for the rest
of the nodes. If you don't have it in your system, you can't communicate
with nodes, services, messages, and others. But it is possible to have it in
a computer where nodes work in other computers.

�� Parameter Server: The Parameter Server gives us the possibility to have data
stored using keys in a central location. With this parameter, it is possible to
FRQÀJXUH�QRGHV�ZKLOH�LW
V�UXQQLQJ�RU�WR�FKDQJH�WKH�ZRUNLQJ�RI�WKH�QRGHV�

�� Messages: Nodes communicate with each other through messages.
A message contains data that sends information to other nodes. ROS
has many types of messages, and you can also develop your own type
of message using standard messages.

Chapter 2

[����]

�� Topics: Each message must have a name to be routed by the ROS network.
When a node is sending data, we say that the node is publishing a topic.
Nodes can receive topics from other nodes simply by subscribing to the topic.
A node can subscribe to a topic, and it isn't necessary that the node that is
publishing this topic should exist. This permits us to decouple the production
of the consumption. It's important that the name of the topic must be unique
to avoid problems and confusion between topics with the same name.

�� Services: When you publish topics, you are sending data in a many-to-many
fashion, but when you need a request or an answer from a node, you can't do
it with topics. The services give us the possibility to interact with nodes. Also,
services must have a unique name. When a node has a service, all the nodes
can communicate with it, thanks to ROS client libraries.

�� Bags: Bags are a format to save and play back the ROS message data. Bags
are an important mechanism for storing data, such as sensor data, that can
EH�GLIÀFXOW�WR�FROOHFW�EXW�LV�QHFHVVDU\�IRU�GHYHORSLQJ�DQG�WHVWLQJ�DOJRULWKPV��
You will use bags a lot while working with complex robots.

,Q�WKH�IROORZLQJ�ÀJXUH��\RX�FDQ�VHH�WKH�JUDSKLFDO�UHSUHVHQWDWLRQ�RI�WKLV�OHYHO��
It represents a real robot working in real conditions. In the graph, you can see the
nodes, the topics, what node is subscribed to a topic, and so on. This graph does
not represent the messages, bags, Parameter Server, and services. It is necessary
for other tools to see a graphic representation of them. The tool used to create the
graph is rxgraph; you will learn more about it in the upcoming sections.

The ROS Architecture with Examples

[����]

Nodes
Nodes are executables that can communicate with other processes using topics,
services, or the Parameter Server. Using nodes in ROS provides us with fault
tolerance and separates the code and functionalities making the system simpler.

A node must have a unique name in the system. This name is used to permit the
node to communicate with another node using its name without ambiguity. A node
can be written using different libraries such as roscpp and rospy; roscpp is for
C++ and rospy is for Python. Throughout this book, we will be using roscpp.

ROS has tools to handle nodes and give us information about it such as rosnode.
The tool rosnode is a command-line tool for displaying information about nodes,
such as listing the currently running nodes. The commands supported are as follows:

�� rosnode info node: This prints information about the node
�� rosnode kill node: This kills a running node or sends a given signal
�� rosnode list: This lists the active nodes
�� rosnode machine hostname: This lists the nodes running on a particular

machine or lists the machines
�� rosnode ping node: This tests the connectivity to the node
�� rosnode cleanup: This purges registration information from

unreachable nodes

In the upcoming sections, we will learn how to use these commands with
some examples.

A powerful feature of ROS nodes is the possibility to change parameters while you
are starting the node. This feature gives us the power to change the node name,
WRSLF�QDPHV��DQG�SDUDPHWHU�QDPHV��:H�XVH�WKLV�WR�UHFRQÀJXUH�WKH�QRGH�ZLWKRXW�
recompiling the code so that we can use the node in different scenes.

An example for changing a topic name is as follows:

$ rosrun book_tutorials tutorialX topic1:=/level1/topic1

This command will change the topic name topic1 to /level1/topic1. I am sure
\RX�GR�QRW�XQGHUVWDQG�WKLV�DW�WKLV�PRPHQW��EXW�\RX�ZLOO�ÀQG�WKH�XWLOLW\�RI�LW�LQ�WKH�
upcoming chapters.

Chapter 2

[����]

To change parameters in the node, you can do something similar to changing the
topic name. For this, you only need to add an underscore to the parameter name;
for example:

$ rosrun book_tutorials tutorialX _param:=9.0

This will set param�WR�WKH�ÁRDW�QXPEHU�9.0.

Keep in mind that you cannot use some names that are reserved by the system.
They are:

�� __name: This is a special reserved keyword for the name of the node
�� __log: This is a reserved keyword that designates the location where the

QRGH
V�ORJ�ÀOH�VKRXOG�EH�ZULWWHQ
�� __ip and __hostname: These are substitutes for ROS_IP and ROS_HOSTNAME
�� __master: This is a substitute for ROS_MASTER_URI
�� __ns: This is a substitute for ROS_NAMESPACE

Topics
Topics are buses used by nodes to transmit data. Topics can be transmitted without
a direct connection between nodes, meaning the production and consumption of data
are decoupled. A topic can have various subscribers.

Each topic is strongly typed by the ROS message type used to publish it, and nodes
can only receive messages from a matching type. A node can subscribe to a topic
only if it has the same message type.

The topics in ROS can be transmitted using TCP/IP and UDP. The TCP/IP-based
transport is known as TCPROS and uses the persistent TCP/IP connection. This is
the default transport used in ROS.

The UDP-based transport is known as UDPROS and is a low-latency, lossy
transport. So, it is best suited for tasks such as teleoperation.

ROS has a tool to work with topics called rostopic. It is a command-line tool that
gives us information about the topic or publishes data directly on the network.

This tool has the following parameters:

�� rostopic bw /topic: This displays the bandwidth used by the topic.
�� rostopic echo /topic: This prints messages to the screen.

The ROS Architecture with Examples

[����]

�� rostopic find message_type��7KLV�ÀQGV�WRSLFV by their type.
�� rostopic hz /topic: This displays the publishing rate of the topic.
�� rostopic info /topic: This prints information about the active topic,

the topics published, the ones it is subscribed to, and services.
�� rostopic list: This prints information about active topics.
�� rostopic pub /topic type args: This publishes data to the topic.

It allows us to create and publish data in whatever topic we want,
directly from the command line.

�� rostopic type /topic: This prints the topic type, that is, the type
of message it publishes.

We will learn to use it in the upcoming sections.

Services
When you need to communicate with nodes and receive a reply, you cannot do it
with topics; you need to do it with services.

The services are developed by the user, and standard services don't exist for nodes.
7KH�ÀOHV�ZLWK�WKH�VRXUFH�FRGH�RI�WKH�PHVVDJHV�DUH�VWRUHG�LQ�WKH�srv folder.

Like topics, services have an associated service type that is the package resource
name of the .srv�ÀOH��$V�ZLWK�RWKHU�526�ÀOHV\VWHP�EDVHG�W\SHV��WKH�VHUYLFH�W\SH�
is the package name and the name of the .srv�ÀOH��)RU�H[DPSOH��WKH�chapter2_
tutorials/srv/chapter2_srv1.srv�ÀOH�KDV�WKH�VHUYLFH�W\SH�chapter2_
tutorials/chapter2_srv1.

ROS has two command-line tools to work with services, rossrv and rosservice.
With rossrv, we can see information about the services' data structure, and it has
the exact same usage as rosmsg.

With rosservice, we can list and query services. The commands supported are
as follows:

�� rosservice call /service args: This calls the service with the
provided arguments

�� rosservice find msg-type: This ÀQGV�VHUYLFHV�E\�WKH�service type
�� rosservice info /service: This prints information about the service
�� rosservice list: This lists the active services
�� rosservice type /service: This prints the service type
�� rosservice uri /service: This prints the service ROSRPC URI

Chapter 2

[����]

Messages
A node sends information to another node using messages that are published
by topics. The message has a simple structure that uses standard types or types
developed by the user.

Message types use the following standard ROS naming convention: the name of
the package, followed by /, and the name of the .msg�ÀOH��)RU�H[DPSOH��std_msgs/
msg/String.msg has the message type, std_msgs/String.

ROS has the command-line tool rosmsg to get information about messages.

The accepted parameters are as follows:

�� rosmsg show: This displays the ÀHOGV�RI�D�PHVVDJH
�� rosmsg list: This lists all the messages
�� rosmsg package: This lists all the messages in a package
�� rosmsg packages: This lists all packages that have the message
�� rosmsg users: This searches�IRU�FRGH�ÀOHV�WKDW�XVH�WKH�PHVVDJH�W\SH
�� rosmsg md5: This displays the MD5 sum of a message

%DJV
$�EDJ�LV�D�ÀOH�FUHDWHG�E\�526�ZLWK�WKH�.bag format to save all the information of
the messages, topics, services, and others. You can use this data later to visualize
what has happened; you can play, stop, rewind, and perform other operations.

7KH�EDJ�ÀOH�FDQ�EH�UHSURGXFHG�LQ�526�OLNH�D�UHDO�VHVVLRQ��VHQGLQJ�WKH�WRSLFV�DW�
the same time with the same data. Normally, we use this functionality to debug
our algorithms.

7R�XVH�EDJ�ÀOHV��ZH�KDYH�WKH�IROORZLQJ�WRROV�LQ�526�

�� rosbag: This is used to record, play, and perform other operations
�� rxbag: This is used to visualize the data in a graphic environment
�� rostopic: This helps us see the topics sent to the nodes

The ROS Architecture with Examples

[����]

Master
The ROS Master provides naming and registration services to the rest of the nodes
in the ROS system. It tracks publishers and subscribers to topics as well as services.
The role of the Master is to enable individual ROS nodes to locate one another.
Once these nodes have located each other, they communicate with each other in
a peer-to-peer fashion.

The Master also provides the Parameter Server. The Master is most commonly
run using the roscore command, which loads the ROS Master along with other
essential components.

3DUDPHWHU�6HUYHU
A Parameter Server is a shared, multivariable dictionary that is accessible via
a network. Nodes use this server to store and retrieve parameters at runtime.

The Parameter Server is implemented using XML-RPC and runs inside the ROS
Master, which means that its API is accessible via normal XMLRPC libraries.

The Parameter Server uses XMLRPC data types for parameter values, which
include the following:

�� 32-bit integers
�� Booleans
�� Strings
�� Doubles
�� ISO 8601 dates
�� Lists
�� Base 64-encoded binary data

ROS has the rosparam tool to work with the Parameter Server. The supported
parameters are as follows:

�� rosparam list: This lists all the parameters in the server
�� rosparam get parameter: This gets the value of a parameter
�� rosparam set parameter value: This sets the value of a parameter
�� rosparam delete parameter: This deletes a parameter
�� rosparam dump file: This�VDYHV�WKH�3DUDPHWHU�6HUYHU�WR�D�ÀOH
�� rosparam load file: This�ORDGV�D�ÀOH��ZLWK�SDUDPHWHUV��RQ�WKH�

Parameter Server

Chapter 2

[����]

8QGHUVWDQGLQJ�WKH�526�&RPPXQLW\�OHYHO
The ROS Community level concepts are ROS resources that enable separate
communities to exchange software and knowledge. These resources include:

�� Distributions: ROS distributions are collections of versioned stacks that
you can install. ROS distributions play a similar role to Linux distributions.
They make it easier to install a collection of software, and they also maintain
consistent versions across a set of software.

�� Repositories: ROS relies on a federated network of code repositories,
where different institutions can develop and release their own robot
software components.

�� The ROS Wiki: The ROS Wiki is the main forum for documenting
information about ROS. Anyone can sign up for an account and contribute
their own documentation, provide corrections or updates, write tutorials,
and more.

�� Mailing lists: The ROS user-mailing list is the primary communication
channel about new updates to ROS as well as a forum to ask questions
about the ROS software.

6RPH�WXWRULDOV�WR�SUDFWLFH�ZLWK�526
It is time to practice what we have learned until now. In the upcoming sections,
you will see examples to practice along with the creation of packages, using nodes,
using the Parameter Server, and moving a simulated robot with TurtleSim.

1DYLJDWLQJ�WKURXJK�WKH�526�¿OHV\VWHP
We have some command-line�WRROV�WR�QDYLJDWH�WKURXJK�WKH�ÀOHV\VWHP��:H�DUH�JRLQJ�
to explain the most used ones.

To get information and move to packages and stacks, we will use rospack, rosstack,
roscd, and rosls.

We use rospack and rosstack to get information about packages and stacks, the
path, the dependencies, and so on.

)RU�H[DPSOH��LI�\RX�ZDQW�WR�ÀQG�WKH�SDWK�RI�WKH�turtlesim package, you will use this:

$ rospack find turtlesim

The ROS Architecture with Examples

[40]

You will then obtain the following:

/opt/ros/fuerte/share/turtlesim

The same happens with stacks that you have installed in the system. An example of
this is as follows:

$ rosstack find 'nameofstack'

7R�OLVW�WKH�ÀOHV�LQVLGH�WKH�SDFN�RU�VWDFN��\RX�ZLOO�XVH�WKLV�

$ rosls turtlesim

You will then obtain the following:

cmake images mimic srv turtle_teleop_key

draw_square manifest.xml msg turtlesim_node

If you want to go inside the folder, you will use roscd as follows:

$ roscd turtlesim

$ pwd

You will obtain the following new path:

/opt/ros/fuerte/share/turtlesim

Creating our own workspace
Before doing anything, we are going to create our own workspace. In this workspace,
we will have all the code that we will use in this book.

To see the workspace that ROS is using, use the following command:

$ echo $ROS_PACKAGE_PATH

You will see something like this:

/opt/ros/fuerte/share:/opt/ros/fuerte/stacks

The folder that we are going to create is in ~/dev/rosbook/. To add this folder,
we use the following lines:

$ cd ~

$ mkdir –p dev/rosbook

Chapter 2

[41]

Once we have the folder in place, it is necessary to add this new path to ROS_PACKAGE_
PATH. To do that, we only need to add a new line at the end of the ~/.bashrc�ÀOH�

$ echo "export ROS_PACKAGE_PATH"~/dev/rosbook:${ROS_PACKAGE_PATH}" >>
~/.bashrc

$. ~/.bashrc

Now we have our new IROGHU�FUHDWHG�DQG�FRQÀJXUHG�IRU�XVH�ZLWK�526�

Creating an ROS package
As said before, you can create a package manually. To avoid tedious work, we will
use the roscreate-pkg command-line tool.

We will create the new package in the folder created previously using the
following lines:

$ cd ~/dev/rosbook

$ roscreate-pkg chapter2_tutorials std_msgs rospy roscpp

The format of this command includes the name of the package and the dependencies
that will have the package; in our case, they are std_msgs, rospy, and roscpp. This
is shown in the following command line:

roscreate-pkg [package_name] [depend1] [depend2] [depend3]

The dependencies included are the following:

�� std_msgs: This contains common message types representing primitive
data types and other basic message constructs, such as multiarrays.

�� rospy: This is a pure Python client library for ROS
�� roscpp: This is a C++ implementation of ROS. It provides a client library

that enables C++ programmers to quickly interface with ROS topics, services,
and parameters.

If everything is right, you will see the following screenshot:

The ROS Architecture with Examples

[����]

As we saw before, you can use the rospack, roscd, and rosls commands to get
information of the new package:

�� rospack find chapter2_tutorials��7KLV�FRPPDQG�KHOSV�XV�ÀQG�WKH�SDWK
�� rospack depends chapter2_tutorials: This command helps us see

the dependencies
�� rosls chapter2_tutorials: This command helps us see the content
�� roscd chapter2_tutorials: This command changes the actual path

%XLOGLQJ�DQ�526�SDFNDJH
Once you have your package created, and you have some code, it is necessary to
build the package. When you build the package, what really happens is that the
code is compiled.

To build a package, we will use the rosmake tool as follows:

$ rosmake chapter2_tutorials

After a few seconds, you will see something like this:

If you don't obtain failures, the package is compiled.

Playing with ROS nodes
As we have explained in the Nodes section, nodes are executable programs and
these executables are in the packagename/bin directory. To practice and learn
about nodes, we are going to use a typical package called turtlesim.

,I�\RX�KDYH�LQVWDOOHG�WKH�GHVNWRS�LQVWDOODWLRQ�ÀOH��\RX�KDYH�WKH�turtlesim package
installed; if not, install it using the following command:

$ sudo apt-get install ros-fuerte-ros-tutorials

Before starting with anything, you must start roscore as follows:

$ roscore

Chapter 2

[����]

To get information on nodes, we have the tool rosnode. To see what parameters are
accepted, type the following command:

$ rosnode

You will obtain a list of accepted parameters as shown in the following screenshot:

If you want a more detailed explanation on the use of these parameters, use the
following line:

$ rosnode <param> -h

Now that roscore is running, we are going to get information about the nodes that
are running:

$ rosnode list

You see that the only node running is /rosout. It is normal because this node runs
whenever roscore is run.

We can get all the information of this node using parameters. Try using the following
commands for more information:

$ rosnode info

$ rosnode ping

$ rosnode machine

$ rosnode kill

Now we are going to start a new node with rosrun as follows:

$ rosrun turtlesim turtlesim_node

The ROS Architecture with Examples

[44]

We will then see a new window appear with a little turtle in the middle, as shown
in the following screenshot:

If we see the node list now, we will see a new node with the name /turtlesim.

You can see the information of the node using rosnode info nameNode.
You can see a lot of information that can be used to debug your programs:

$ rosnode info /turtlesim

Node [/turtlesim]

Publications:

 * /turtle1/color_sensor [turtlesim/Color]

 * /rosout [rosgraph_msgs/Log]

 * /turtle1/pose [turtlesim/Pose]

Subscriptions:

 * /turtle1/command_velocity [unknown type]

Services:

 * /turtle1/teleport_absolute

 * /turtlesim/get_loggers

Chapter 2

[����]

 * /turtlesim/set_logger_level

 * /reset

 * /spawn

 * /clear

 * /turtle1/set_pen

 * /turtle1/teleport_relative

 * /kill

contacting node http://aaronmr-laptop:42791/ ...

Pid: 28337

Connections:

 * topic: /rosout

 * to: /rosout

 * direction: outbound

 * transport: TCPROS

In the information, we can see the publications (topics), subscriptions (topics), and
the services (srv) that the node has and the unique names of each.

Now, let us show you how to interact with the node using topics and services.

Learning how to interact with topics
To interact and get information of topics, we have the rostopic tool. This tool accepts
the following parameters:

�� rostopic bw: This displays the bandwidth used by topics
�� rostopic echo: This prints messages to the screen
�� rostopic find��7KLV�ÀQGV topics by their type
�� rostopic hz: This displays the publishing rate of topics
�� rostopic info: This prints information about active topics
�� rostopic list: This lists the active topics
�� rostopic pub: This publishes data to the topic
�� rostopic type: This prints the topic type

If you want to see more information on these parameters, use -h as follows:

$ rostopic bw –h

The ROS Architecture with Examples

[����]

With the pub parameter, we can publish topics that can subscribe to any node.
We only need to publish the topic with the correct name. We will do this test
later; we are now going to use a node that will do this work for us:

$ rosrun turtlesim turtle_teleop_key

With this node, we can move the turtle using the arrow keys as you can see in
the following screenshot:

Why is the turtle moving when turtle_teleop_key�LV�H[HFXWHG"

If you want to see the information of the /teleop_turtle and /turtlesim nodes,
we can see in the following code that there exists a topic called * /turtle1/
command_velocity [turtlesim/Velocity] in the Publications section of the
ÀUVW�QRGH��LQ�WKH�Subscriptions section of the second node, there is * /turtle1/
command_velocity [turtlesim/Velocity]:

$ rosnode info /teleop_turtle

Node [/teleop_turtle]

...

Chapter 2

[47]

Publications:

 * /turtle1/command_velocity [turtlesim/Velocity]

 ...

$ rosnode info /turtlesim

Node [/teleop_turtle]

...

Subscriptions:

 * /turtle1/command_velocity [turtlesim/Velocity]

...

7KLV�PHDQV�WKDW�WKH�ÀUVW�QRGH�LV�SXEOLVKLQJ�D�WRSLF�WKDW�WKH�VHFRQG�QRGH�FDQ�
subscribe to.

You can see the topics' list using the following command lines:

$ rostopic list

/rosout

/rosout_agg

/turtle1/color_sensor

/turtle1/command_velocity

/turtle1/pose

With the echo parameter, you can see the information sent by the node.

Run the following command line and use the arrow keys to see what data is
being sent:

$ rostopic echo /turtle1/command_velocity

You will see something like this:

linear: 2.0

angular: 0.0

linear: 0.0

angular: 2.0

The ROS Architecture with Examples

[����]

You can see the type of message sent by the topic using the following command lines:

$ rostopic type /turtle1/command_velocity

turtlesim/Velocity

,I�\RX�ZDQW�WR�VHH�WKH�PHVVDJH�ÀHOGV��\RX�FDQ�GR�LW�ZLWK�WKH�IROORZLQJ�FRPPDQG�OLQHV�

$ rosmsg show turtlesim/Velocity

float32 linear

float32 angular

These tools are useful because, with this information, we can publish topics using the
command, rostopic pub [topic] [msg_type] [args]:

$ rostopic pub -1 /turtle1/command_velocity turtlesim/Velocity -- 1 1

You will see the turtle doing a curve.

Chapter 2

[����]

Learning how to use services
Services are another way through which nodes can communicate with each other.
Services allow nodes to send a request and receive a response.

The tool that we are going to use to interact with services is rosservice. The accepted
parameters for this command are as follows:

�� rosservice args /service: This prints service arguments
�� rosservice call /service: This calls the service with the

provided arguments
�� rosservice find msg-type��7KLV�ÀQGV�VHUYLFHV�E\�WKHLU�VHUYLFH�W\SH
�� rosservice info /service: This prints information about the service
�� rosservice list: This lists active services
�� rosservice type /service: This prints the service type
�� rosservice uri /service: This prints the service ROSRPC URI

We are going to list the services available for the turtlesim node by using the
following code, so if it is not working, run roscore and run the turtlesim node:

$ rosservice list

You will obtain the following output:

/clear

/kill

/reset

/rosout/get_loggers

/rosout/set_logger_level

/spawn

/teleop_turtle/get_loggers

/teleop_turtle/set_logger_level

/turtle1/set_pen

/turtle1/teleport_absolute

/turtle1/teleport_relative

/turtle2/set_pen

/turtle2/teleport_absolute

/turtle2/teleport_relative

/turtlesim/get_loggers

/turtlesim/set_logger_level

The ROS Architecture with Examples

[����]

If you want to see the type of any service, for example, the /clear service, use:

$ rosservice type /clear

You will then obtain:

std_srvs/Empty

To invoke a service, you will use rosservice call [service] [args]. If you want
to invoke the /clear service, use:

$ rosservice call /clear

In the turtlesim window, you will now see that the lines created by the movements
of the turtle will be deleted.

Now, we are going to try another service, for example, the /spawn service. This
service will create another turtle in another location with a different orientation.
To start with, we are going to see the following type of message:

$ rosservice type /spawn | rossrv show

We will then obtain the following:

float32 x

float32 y

float32 theta

string name

string name

:LWK�WKHVH�ÀHOGV��we know how to invoke the service. We need the positions of
x and y, the orientation (theta), and the name of the new turtle:

$ rosservice call 3 3 0.2 "new_turtle"

Chapter 2

[����]

We then obtain the following result:

8VLQJ�WKH�3DUDPHWHU�6HUYHU
The Parameter Server is used to store data that is accessible by all the nodes. ROS has
a tool to manage the Parameter Server called rosparam. The accepted parameters are
as follows:

�� rosparam set parameter value: This sets the parameter
�� rosparam get parameter: This gets the parameter
�� rosparam load file: This loads parameters�IURP�WKH�ÀOH
�� rosparam dump file: This dumps parameters�WR�WKH�ÀOH
�� rosparam delete parameter: This deletes the parameter
�� rosparam list: This lists the parameter names

For example, we can see the parameters in the server that are used by all the nodes:

$ rosparam list

The ROS Architecture with Examples

[����]

We obtain the following output:

/background_b

/background_g

/background_r

/rosdistro

/roslaunch/uris/host_aaronmr_laptop__60878

/rosversion

/run_id

The background parameters are of the turtlesim node. These parameters change
the color of the windows that are initially blue. If you want to read a value, you will
use the get parameter:

$ rosparam get /background_b

To set a new value, you will use the set parameter:

$ rosparam set /background_b 100

Another important feature of rosparam is the dump parameter. With this parameter,
you can save or load the content of the Parameter Server.

To save the Parameter Server, use rosparam dump [file_name]:

$ rosparam dump save.yaml

7R�ORDG�D�ÀOH�ZLWK�QHZ�GDWD�IRU�WKH�3DUDPHWHU�6HUYHU��XVH�rosparam load [file_
name] [namespace]:

$ rosparam load load.yaml namespace

Creating nodes
In this section, we are going to learn how to create two nodes: one to publish some
data and the other to receive this data. This is the basic way of communicating
between two nodes, that is, to handle data and to do something with that data:

$ roscd chapter2_tutorials/src/

&UHDWH�WZR�ÀOHV�ZLWK�WKH�QDPHV��example1_a.cpp and example1_b.cpp.

The example1_a.cpp�ÀOH�ZLOO�VHQG�WKH�GDWD�ZLWK�WKH�QRGH�QDPH��DQG�WKH�
example2example1_b.cpp�ÀOH�ZLOO�VKRZ�WKH�GDWD�LQ�WKH�VKHOO�

Chapter 2

[����]

Copy the following code into the example1_a.cpp�ÀOH�RU�GRZQORDG�LW�IURP�
the repository:

#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "example1_a");
 ros::NodeHandle n;
 ros::Publisher chatter_pub = n.advertise<std_
msgs::String>("message", 1000);
 ros::Rate loop_rate(10);
 while (ros::ok())
 {
 std_msgs::String msg;
 std::stringstream ss;
 ss << " I am the example1_a node ";
 msg.data = ss.str();
 //ROS_INFO("%s", msg.data.c_str());
 chatter_pub.publish(msg);
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

Here is some further explanation about the preceding code. The headers to be included
are ros/ros.h, std_msgs/String.h, and sstream. Here, ros/ros.h includes all the
QHFHVVDU\�ÀOHV�IRU�XVLQJ�WKH�QRGH�ZLWK�526��DQG�std_msgs/String.h includes the
header that denotes the type of message we are going to use:

#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

Initiate the node and set the name; remember that the name must be unique:

ros::init(argc, argv, "example1_a");

The following is the handler of our process:

ros::NodeHandle n;

The ROS Architecture with Examples

[����]

Set a publisher and tell the Master the name of the topic and the type. The name is
message, and the second parameter is the buffer size. If the topic is publishing data
quickly, the buffer will keep 1,000 messages as follows:

ros::Publisher chatter_pub = n.advertise<std_msgs::String>("message",
1000);

Set the frequency to send the data; in this case, it is 10 Hz:

ros::Rate loop_rate(10);

The ros::ok() library stops the node if it receives a Ctrl + C keypress or if ROS
stops all the nodes:

while (ros::ok())
{

In this part, we create a variable for the message with the correct type to send the data:

std_msgs::String msg;
std::stringstream ss;
ss << " I am the example1_a node ";
msg.data = ss.str();

Here, the message is published:

chatter_pub.publish(msg);

We have a subscriber in this part where ROS updates and reads all the topics:

ros::spinOnce();

Sleep the necessary time to get a 10 Hz frequency:

loop_rate.sleep();

Copy the following code into the example1_b.cpp�ÀOH�RU�GRZQORDG�LW�IURP�
the repository:

#include "ros/ros.h"
#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
 ROS_INFO("I heard: [%s]", msg->data.c_str());
}

int main(int argc, char **argv)

Chapter 2

[����]

{
 ros::init(argc, argv, "example1_b");
 ros::NodeHandle n;
 ros::Subscriber sub = n.subscribe("message", 1000, chatterCallback);
 ros::spin();
 return 0;
}

Here is some further explanation about the preceding code. Include the headers and
the type of message to use for the topic:

#include "ros/ros.h"
#include "std_msgs/String.h"

This function is called every time that node receives a message. This is where we do
something with the data; in this case, we show it in the shell:

ROS_INFO() is used to print it in the shell.

void messageCallback(const std_msgs::String::ConstPtr& msg)
{
 ROS_INFO("I heard: [%s]", msg->data.c_str());
}

Create a subscriber and start to listen to the topic with the name message. The buffer
will be of 1,000, and the function to handle the message will be messageCallback:

ros::Subscriber sub = n.subscribe("message", 1000, messageCallback);

The ros::spin() library is a loop where the node starts to read the topic, and when
a message arrives, messageCallback is called. When the user presses Ctrl + C, the
node will exit the loop and the loop ends:

ros::spin();

%XLOGLQJ�WKH�QRGH
As we are using the package chapter2_tutorials��ZH�DUH�JRLQJ�WR�HGLW�WKH�ÀOH�
CMakeLists.txt. You can use your favorite editor or use the rosed tool. This will
RSHQ�WKH�ÀOH�ZLWK�WKH�9LP�HGLWRU�

$ rosed chapter2_tutorials CMakeLists.txt

$W�WKH�HQG�RI�WKH�ÀOH��ZH�FRS\�WKH�IROORZLQJ�FRPPDQG�OLQHV�

rosbuild_add_executable(example1_a src/example1_a.cpp)

rosbuild_add_executable(example1_b src/example1_b.cpp)

The ROS Architecture with Examples

[����]

These lines will create two executables in the /bin folder.

Now to build the package and compile all the nodes, use the rosmake tool:

$ rosmake chapter2_tutorials

If ROS is not running on your computer, you will have to use:

$ roscore

You can check whether ROS is running using the rosnode list command as follows:

$ rosnode list

Now, run both the nodes in different shells:

$ rosrun chapter2_tutorials example1_a
$ rosrun chapter2_tutorials example1_b

If you check the shell where the node example1_b is running, you will see something
like this:

...
[INFO] [1355228542.283236850]: I heard: [I am the example1_a node]
[INFO] [1355228542.383221843]: I heard: [I am the example1_a node]
[INFO] [1355228542.483249861]: I heard: [I am the example1_a node]
...

(YHU\WKLQJ�WKDW�LV�KDSSHQLQJ�FDQ�EH�YLHZHG�LQ�WKH�IROORZLQJ�ÀJXUH��<RX�FDQ�VHH�WKDW�
the example1_a node is publishing the topic message, and the example2_b node is
subscribing to the topic.

You can use rosnode and rostopic to debug and see what the nodes are doing.

Try the following commands:

$ rosnode list
$ rosnode info /example1_a

Chapter 2

[����]

$ rosnode info /example1_b
$ rostopic list
$ rostopic info /message
$ rostopic type /message
$ rostopic bw /message

&UHDWLQJ�PVJ�DQG�VUY�¿OHV
In this section, we are going to learn how to create msg and srv�ÀOHV�IRU�XVLQJ�WKHP�
LQ�RXU�QRGHV��7KH\�DUH�ÀOHV�ZKHUH�ZH�SXW�D�VSHFLÀFDWLRQ�DERXW�WKH�type of data to
EH�WUDQVPLWWHG�DQG�WKH�YDOXHV�RI�WKHVH�GDWD��526�ZLOO�XVH�WKHVH�ÀOHV�WR�FUHDWH�WKH�
necessary code for us to implement the msg and srv�ÀOHV�WR�EH�XVHG�LQ�RXU�QRGHV��
Let's start with the msg�ÀOH�ÀUVW�

In the example used in the Building the node section, we have created two nodes
with a standard type message. Now, we are going to learn how to create custom
messages with the tools that ROS has.

First, create a new folder msg in our package chapter2_tutorials, and create a
QHZ�ÀOH�chapter2_msg1 adding the following lines:

int32 A
int32 B
int32 C

Now edit CMakeList.txt, remove # from the line # rosbuild_genmsg(),
and build the package with rosmake as follows:

$ rosmake chapter2_tutorials

To check whether all is OK, you can use the rosmsg command:

$ rosmsg show chapter2_tutorials/chapter2_msg1

If you see the same FRQWHQW�RI�WKH�ÀOH�chapter2_msg1.msg, all is OK.

Now we are going to create an srv�ÀOH��&UHDWH�D�QHZ�IROGHU�LQ�WKH�chapter2_
tutorials folder with the name srv�DQG�FUHDWH�D�QHZ�ÀOH�chapter2_srv1.srv
adding the following lines:

int32 A
int32 B
int32 C

int32 sum

The ROS Architecture with Examples

[����]

Edit CMakeList.txt, and remove # from the line # rosbuild_gensrv(), and build
the package with rosmake chapter2_tutorials.

You can test whether all is OK using the rossrv tool as follows:

$ rossrv show chapter2_tutorials/chapter2_srv1

If you see the same�FRQWHQW�RI�WKH�ÀOH�chapter2_srv1.srv, all is OK.

8VLQJ�WKH�QHZ�VUY�DQG�PVJ�¿OHV
First, we are going to learn how to create a service and how to use it in ROS.
Our service will calculate the sum of three numbers. We need two nodes, a
server and a client.

In the package chapter2_tutorials, create two new nodes with names:
example2_a.cpp and example2_b.cpp��5HPHPEHU�WR�SXW�WKH�ÀOHV�LQ�WKH�src folder.

,Q�WKH�ÀUVW�ÀOH��example2_a.cpp, add this code:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"

bool add(chapter2_tutorials::chapter2_srv1::Request &req,
 chapter2_tutorials::chapter2_srv1::Response &res)
{
 res.sum = req.A + req.B + req.C;
 ROS_INFO("request: A=%ld, B=%ld C=%ld", (int)req.A, (int)req.B,
(int)req.C);
 ROS_INFO("sending back response: [%ld]", (int)res.sum);
 return true;
}

int main(int argc, char **argv)
{
 ros::init(argc, argv, "add_3_ints_server");
 ros::NodeHandle n;

 ros::ServiceServer service = n.advertiseService("add_3_ints", add);
 ROS_INFO("Ready to add 3 ints.");
 ros::spin();

 return 0;
}

Chapter 2

[����]

Include the necessary headers and srv that we created:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"

This function will add three variables and send the result to the other node:

bool add(chapter2_tutorials::chapter2_srv1::Request &req,
 chapter2_tutorials::chapter2_srv1::Response &res)

Here, the service is created and advertised over ROS as follows:

ros::ServiceServer service = n.advertiseService("add_3_ints", add);

,Q�WKH�VHFRQG�ÀOH��example2_b.cpp, add this code:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"
#include <cstdlib>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "add_3_ints_client");
 if (argc != 4)
 {
 ROS_INFO("usage: add_3_ints_client A B C ");
 return 1;
 }

 ros::NodeHandle n;
 ros::ServiceClient client = n.serviceClient<chapter2_
tutorials::chapter2_srv1>("add_3_ints");
 chapter2_tutorials::chapter2_srv1 srv;
 srv.request.A = atoll(argv[1]);
 srv.request.B = atoll(argv[2]);
 srv.request.C = atoll(argv[3]);
 if (client.call(srv))
 {
 ROS_INFO("Sum: %ld", (long int)srv.response.sum);
 }
 else
 {
 ROS_ERROR("Failed to call service add_3_ints");
 return 1;
 }

 return 0;
}

The ROS Architecture with Examples

[����]

Create a client for the service with the name add_3_ints:

ros::ServiceClient client = n.serviceClient<chapter2_
tutorials::chapter2_srv1>("add_3_ints");

Here we create an instance of our srv�ÀOH�DQG�ÀOO�DOO�WKH�YDOXHV�WR�EH�VHQW��,I�\RX�
UHPHPEHU��WKH�PHVVDJH�KDV�WKUHH�ÀHOGV�

chapter2_tutorials::chapter2_srv1 srv;
srv.request.A = atoll(argv[1]);
srv.request.B = atoll(argv[2]);
srv.request.C = atoll(argv[3]);

With these lines, the service is called and the data is sent. If the call succeeds, call()
will return true; if not, call() will return false:

if (client.call(srv))

To build new nodes, edit CMakeList.txt and add the following lines:

rosbuild_add_executable(example2_a src/example2_a.cpp)
rosbuild_add_executable(example2_b src/example2_b.cpp)

Now execute the following command:

$ rosmake chapter2_tutorials

To start the nodes, execute the following command lines:

$rosrun chapter2_tutorials example2_a

$rosrun chapter2_tutorials example2_b 1 2 3

And you should see something like this:

Node example2_a

[INFO] [1355256113.014539262]: Ready to add 3 ints.

[INFO] [1355256115.792442091]: request: A=1, B=2 C=3

[INFO] [1355256115.792607196]: sending back response: [6]

Node example2_b

[INFO] [1355256115.794134975]: Sum: 6

Now we are going to create nodes with our custom msg�ÀOH��7KH�H[DPSOH�LV�WKH�
same, that is, example1_a.cpp and example1_a.cpp but with the new message
chapter2_msg1.msg.

Chapter 2

[����]

The following code snippet is present in the example3_a.cpp�ÀOH�

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg1.h"
#include <sstream>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "example1_a");
 ros::NodeHandle n;
 ros::Publisher pub = n.advertise<chapter2_tutorials::chapter2_
msg1>("message", 1000);
 ros::Rate loop_rate(10);
 while (ros::ok())
 {
 chapter2_tutorials::chapter2_msg1 msg;
 msg.A = 1;
 msg.B = 2;
 msg.C = 3;
 pub.publish(msg);
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

The following code snippet is present in the example3_b.cpp�ÀOH�

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg1.h"

void messageCallback(const chapter2_tutorials::chapter2_
msg1::ConstPtr& msg)
{
 ROS_INFO("I heard: [%d] [%d] [%d]", msg->A, msg->B, msg->C);
}

int main(int argc, char **argv)
{
 ros::init(argc, argv, "example1_b");
 ros::NodeHandle n;
 ros::Subscriber sub = n.subscribe("message", 1000, messageCallback);
 ros::spin();
 return 0;
}

The ROS Architecture with Examples

[����]

If we run both the nodes now, we will see something like this:

…

[INFO] [1355270835.920368620]: I heard: [1] [2] [3]

[INFO] [1355270836.020326372]: I heard: [1] [2] [3]

[INFO] [1355270836.120367449]: I heard: [1] [2] [3]

[INFO] [1355270836.220266466]: I heard: [1] [2] [3]

…

6XPPDU\
This chapter provides you with general knowledge of the ROS architecture and how
it works. You saw some concepts, tools, and samples of how to interact with nodes,
topics, and services. In the beginning, all these concepts could look complicated
and without use, but in the upcoming chapters, you will start to understand the
applications of these.

It is useful to practice with these terms and tutorials before continuing because, in
the upcoming chapters, we will suppose that you know all the concepts and uses.

5HPHPEHU�WKDW�LI�\RX�KDYH�TXHULHV�UHJDUGLQJ�VRPHWKLQJ��DQG�\RX�FDQQRW�ÀQG�
WKH�VROXWLRQ�LQ�WKLV�ERRN��\RX�FDQ�XVH�WKH�RIÀFLDO�UHVRXUFHV�RI�526�IURP�WKH�85/�
http://www.ros.org. Additionally, you can ask questions to the ROS community
at http://answers.ros.org.

In the next chapter, you will learn how to debug and visualize data using ROS
WRROV��7KHVH�ZLOO�KHOS�\RX�ÀQG�SUREOHPV�DQG�WR�NQRZ�ZKHWKHU�ZKDW�526�LV�GRLQJ�
is correct, and what you expect it to do.

Debugging and Visualization
The ROS framework comes with a great number of powerful tools to help the user
and developer in the process of debugging the code, and detecting problems with
both the hardware and software. This comprises debugging facilities such as log
messages as well as visualization and inspection capabilities, which allows the user
to see what is going on in the system easily.

+HUH��ZH�DOVR�FRYHU�WKH�ZRUNÁRZ�WR�GHEXJ�526�QRGHV�XVLQJ�*'%�GHEXJJHU�DV�DQ�
example. Although this is almost the same as debugging a regular C/C++ program,
there are a few aspects that must be taken into account. We will only focus on these
particular aspects, since explaining the way to use the debugger is far from the scope of
this chapter. You are encouraged to read the GDB reference and user manual for this.

ROS provides an API for logging, which allows setting different logging levels,
depending on the semantics of the message to output or print. This is not only
with the aim of helping debugging but also to have more informative and robust
programs in case of failure. As we will see later, we can inform the user about the
stages in the process of an algorithm with high-level informative messages, while
also warning the user about missed values or parameters as well as regular or fatal
errors, which are unrecoverable.

Debugging and Visualization

[����]

However, once our program compiles and runs, it might still fail. At this point,
WZR�PDMRU�WKLQJV�FRXOG�EH�KDSSHQLQJ��ÀUVW��D�SUREOHP�UHODWHG�WR�WKH�QRGHV��WRSLFV��
services, or any other ROS element, or second, an issue caused by our algorithm
itself. ROS provides a set of powerful tools to inspect the state of the system, which
include the node's graph, with all the connections (publishers and subscribers)
among topics as shown in the following screenshot. Both local and remote nodes
are seamlessly addressed, so the user can easily and rapidly detect a problem in
a node that is not running or a missed topic connection.

Up to some extent, a bunch of generic plotting tools are provided to analyze the
output or results of our own algorithms so that it becomes easier to detect bugs.
)LUVW�RI�DOO��ZH�KDYH�WLPH�VHULHV�SORWV�IRU�VFDODU�YDOXHV��ZKLFK�PLJKW�EH�ÀHOGV�RI�WKH�
messages transferred between nodes. Then, there are tools to show images, even
with support for stereo pairs. Last but not least, we have 3D visualization tools
such as rviz, as shown in the following screenshot, for the PR2 robot. They allow
rendering point clouds, laser scans, and so on. As an important characteristic, all
data belongs to a topic that is placed on a frame so that the data is rendered in that
frame. A robot is generally a compound of many frames with transform frames
among them. To help the user to see the relationships among them, we also have
tools to watch the frame hierarchy at a glance.

Chapter 3

[����]

In the upcoming sections, we will cover the following aspects:

�� Debugging and good practices for developing code when creating ROS nodes.
�� Adding logging messages to our code and setting different levels, from debug

messages to errors, or even fatal ones.
�� Giving names, applying conditions, and throttling the logging messages,

which becomes very useful in large projects.
�� Presenting a graphical tool to manage all the messages.
�� Inspecting the state of the ROS system by listing the nodes running and

the topics and services available.
�� Visualizing the node's graph representation, which are connected by

publishing and subscribing to topics.
�� Plotting scalar data of certain messages.
�� Visualizing scalar data for complex types. In particular, we will cover images

and the case of FireWire cameras, which are seamlessly supported in ROS,
as well as the 3D visualization of many topic types.

�� Explaining what frames are and their close relationship with the messages
published by the topics. Similarly, we will see what a frame transformation
in the TF tree is.

�� Saving the messages sent by topics and how to replay them for simulation
or evaluation purposes.

Debugging and Visualization

[����]

'HEXJJLQJ�526�QRGHV
In order to detect problems in the algorithms implemented inside ROS nodes,
we can face the problem at different levels to make the debugging of the software
easier. First, we must provide some readable information about the progress of the
algorithm, driver, or another piece of software. In ROS, we have a set of logging
macros for this particular purpose, which are completely integrated with the whole
system. Second, we need tools to determine which verbosity level is desired for a
JLYHQ�QRGH��WKLV�LV�UHODWHG�WR�WKH�DELOLW\�WR�FRQÀJXUH�GLIIHUHQW�ORJJLQJ�OHYHOV��,Q�WKH�
case of ROS, we will see how it is possible to set debugging/logging levels even on
WKH�Á\�DV�ZHOO�DV�FRQGLWLRQV�DQG�QDPHV�IRU�SDUWLFXODU�PHVVDJHV��7KLUG��ZH�PXVW�EH�
able to use a debugger to step over the source code. We will see that the widely known
GDB debugger integrates seamlessly with ROS nodes. Finally, at the abstraction (or
semantic) level of ROS nodes and topics, it is useful to inspect the current state of the
whole system. Such introspection capabilities in ROS are supported by means of tools
that draw the nodes graph with connections among topics. The user or developer can
easily detect a broken connection at a glance, as we will explain later in another section.

8VLQJ�WKH�*'%�GHEXJJHU�ZLWK�526�QRGHV
We will start with the standard way of debugging C/C++ executables of any kind.
7KH�ÁH[LELOLW\�RI�526�DOORZV�XVLQJ�WKH�ZHOO�NQRZQ�*'%�GHEXJJHU�ZLWK�D�UHJXODU�
C/C++ program. All we have to know is the location of our executable, which in the
case of ROS would be a node implemented in C++. Therefore, we only have to move
to the path that contains the node binary and run it within GDB. Indeed, we could
also run our node directly without the typical rosrun <package> <node> syntax.

To make it simple, we will show you how to run a node in GDB for the example1
node in the chapter3_tutorials package. First, move to the package with roscd
as follows:

roscd chapter3_tutorials

Then, we only have to recall that C++ binaries are created inside the bin folder
of the package folder's structure. Hence, we simply run it inside GDB using the
following command:

gdb bin/example1

Remember that you must have a roscore command
running before you start your node because it will need
the master/server running.

Chapter 3

[����]

Once roscore is running, you can start your node in GDB by pressing the R key
and Enter. You can also list the associated source code with the L key as well as set
breakpoints or any of the functionalities that GDB comes with. If everything works
correctly, you should see the following output in the GDB terminal after you have
run the node inside the debugger:

(gdb) r

Starting program: /home/enrique/dev/rosbook/chapter3_tutorials/bin/
example1

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_
db.so.1".

[New Thread 0x7ffff2664700 (LWP 3204)]

...

...

[Thread 0x7ffff1e63700 (LWP 3205) exited]

[Inferior 1 (process 3200) exited normally]

$WWDFKLQJ�D�QRGH�WR�*'%�ZKLOH�ODXQFKLQJ�526
If we have a launch�ÀOH�WR�VWDUW�RXU�QRGH��ZH�KDYH�VRPH�DWWULEXWH�LQ�WKH�;0/�syntax
that allows us to attach the node to a GDB session. For the previous node, example1,
in the package chapter3_tutorials, we will add the following node element to the
launch�ÀOH�

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1"/>
</launch>

Note that the package is passed to the pkg attribute and the node to the type
attribute. We also have to give this instance of the node a name since we can run
more than one instance of the same node. In this case, we gave the same name as the
node type, that is, the name attribute, which has the value example1. It is also a good
practice to set the attribute output to screen, so the debugging messages, which
we will see in the following code snippet, appear on the same terminal where we
launched the node:

<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"/>

Debugging and Visualization

[����]

To attach it to GDB, we must add launch-prefix="xterm -e gdb --args":

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"
 launch-prefix="xterm -e gdb --args"/>
</launch>

:KDW�WKLV�SUHÀ[�GRHV�LV�YHU\�VLPSOH��,W�VWDUWV�*'%��ORDGV�RXU�QRGH��DQG�ZDLWV�XQWLO�
the user presses the C or R key; that is, the node is loaded but waiting to run. This
way the user can set breakpoints before the node runs and interact as a regular GDB
session. Also, note that a new window opens up. This is because we create the GDB
session in xterm, so we have a debugging window separated from the program
output window.

Additionally, we can use the same attribute to attach the node to other diagnostic
tools; for example, we can run valgrind on our program to detect memory leaks
DQG�SHUIRUP�VRPH�SURÀOLQJ�DQDO\VLV��)RU�IXUWKHU�LQIRUPDWLRQ�RQ�valgrind, you can
check out http://valgrind.org. To attach our node to it, we proceed in a similar
way as we did with GDB. In this case, we do not need an additional window, so
that we do not start xterm, and simply set valgrind�DV�WKH�ODXQFK�SUHÀ[�

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"
 launch-prefix="valgrind"/>
</launch>

(QDEOLQJ�FRUH�GXPSV�IRU�526�QRGHV
Although ROS nodes are actually regular executables, there are some tricky points
to note to enable core dumps that can be used later in a GDB session. First of all,
we have to set an unlimited core size. Note that this is required for any executable,
not just ROS nodes:

ulimit -c unlimited

7KHQ��WR�DOORZ�FRUH�GXPSV�WR�EH�FUHDWHG��ZH�PXVW�VHW�WKH�FRUH�ÀOHQDPH�WR�XVH�WKH�
process pid by default; otherwise, they will not be created because at $ROS_HOME,
there is already a core directory to prevent core dumps. Therefore, in order to
create core dumps with the name and path $ROS_HOME/core.PID, we must do
the following:

echo 1 > /proc/sys/kernel/core_uses_pid

Chapter 3

[����]

'HEXJJLQJ�PHVVDJHV
It is good practice to include messages that indicate what the program is doing.
However, we must do it ZLWKRXW�FRPSURPLVLQJ�WKH�HIÀFLHQF\�RI�RXU�VRIWZDUH�DQG�
the clearance of its output. In ROS, we have an API that covers both features and is
built on top of log4cxx (a port of the well-known log4j logger library). In brief, we
have several levels of messages, which might have a name depending on a condition
or even throttle, with a null footprint on the performance and full integration with
other tools in the ROS framework. Also, they are integrated seamlessly with the
concurrent execution of nodes, that is, the messages do not get split, but they can
be interleaved according to their timestamps. In the following sections, we will
explain the details and how to use them adequately.

2XWSXWWLQJ�D�GHEXJ�PHVVDJH
ROS comes with a great number of functions or macros that allow us to output a
debugging message as well as errors, warnings, or simply informative messages.
It offers a great functionality by means of message (or logging) levels, conditional
messages, interfaces for STL streams, and much more. To put things in a simple and
straightforward fashion, in order to print an informative message (or information),
we can do the following at any point in the code:

ROS_INFO("My INFO message.");

Note that we do not have to include any particular library in our source code as
long as the main ROS header is included. However, we can add the ros/console.h
header as shown in the following code snippet:

#include <ros/ros.h>
#include <ros/console.h>

As a result of running a program with the preceding message, we will have the
following output:

[INFO] [1356440230.837067170]: My INFO message.

All messages are printed with its level and the current timestamp (your output
might differ for this reason) before the actual message and both these values are
between square brackets. The timestamp is the epoch time, that is, the seconds
and nanoseconds since 1970 followed by our message.

Debugging and Visualization

[70]

This function allows parameters in the same way as the printf function in C.
This means that we can pass values using all special characters that we can use
with printf��IRU�H[DPSOH��ZH�FDQ�SULQW�WKH�YDOXH�RI�D�ÁRDWLQJ�SRLQW�QXPEHU�LQ�
the variable val with this code:

const double val = 3.14;
ROS_INFO("My INFO message with argument: %f", val);

Also, C++ STL streams are supported with *_STREAM functions. Therefore, the
previous instruction is equivalent to the following using streams:

 ROS_INFO_STREAM(
 "My INFO stream message with argument: " << val
);

Please note that we did not specify any stream because it is implicit that we refer to
cout or cerr, depending on the message level, as we will see in the next section.

6HWWLQJ�WKH�GHEXJ�PHVVDJH�OHYHO
ROS comes ZLWK�ÀYH�FODVVLF�ORJJLQJ�OHYHOV��ZKLFK�DUH�LQ�WKH�RUGHU�RI�UHOHYDQFH��
They are DEBUG, INFO, WARN, ERROR, and FATAL.

These names are part of the function or macro used to output messages that follows
this syntax:

ROS_<LEVEL>[_<OTHER>]

Both DEBUG and INFO messages go to cout (or stdout). Meanwhile, WARN, ERROR,
and FATAL go to cerr (or stderr). Also, each message is printed with a particular
color as long as the terminal has this capability. The colors are DEBUG in green,
INFO in white, WARN in yellow, ERROR in red, and FATAL in purple.

The names of these messages clearly say the typology of the message given.
The user must use them accordingly. As we will see in the following sections,
WKLV�DOORZV�XV�WR�RXWSXW�RQO\�PHVVDJHV�VWDUWLQJ�DW�D�XVHU�GHÀQHG�PLQLPXP�OHYHO�
so that debugging messages can be omitted when our code is stable. Additionally,
we have OTHER variants that are explained in the sequel.

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 3

[71]

&RQ¿JXULQJ�WKH�GHEXJJLQJ�OHYHO�RI�D�
particular node
By default, only messages of INFO or a higher level are shown. ROS uses the levels to
ÀOWHU�WKH�PHVVDJHV�SULQWHG�E\�D�SDUWLFXODU�QRGH��7KHUH�DUH�PDQ\�ZD\V�WR�GR�VR��6RPH�
of them are set at the compile time, while others can be changed before execution
XVLQJ�D�FRQÀJXUDWLRQ�ÀOH��,W�LV�DOVR�SRVVLEOH�WR�FKDQJH�WKLV�OHYHO�G\QDPLFDOO\��DV�ZH�
will see later in the following sections, using rosconsole and rxconsole.

First, we will see how to set the debugging level at compile time in our source code.
Just go to the main function, and after the ros::init call, insert the following code:

 // Set the logging level manually to DEBUG
 ROSCONSOLE_AUTOINIT;
 log4cxx::LoggerPtr my_logger =
 log4cxx::Logger::getLogger(ROSCONSOLE_DEFAULT_NAME);
 my_logger->setLevel(
 ros::console::g_level_lookup[ros::console::levels::Debug]
);

You do not need to include any particular header, but in the CMakeLists.txt�ÀOH��
we must link the header to the log4cxx library. To do so, we must put:

find_library(LOG4CXX_LIBRARY log4cxx)

And our node must link to it:

rosbuild_add_executable(example1 src/example1.cpp)

target_link_libraries(example1 ${LOG4CXX_LIBRARY})

Now, DEBUG (and higher) messages are shown when our node runs since we
set ros::console::levels::Debug in the preceding example. You can run the
example1 node to check it and even change the level.

An alternative to the preceding method consists of using the compile-time-logger-
removal macros. Note that this will remove all the messages below a given level
at compilation time, so later we will not have them; this is typically useful for the
release build of our programs. To do so, we must set ROSCONSOLE_MIN_SEVERITY
to the minimum severity level or even none, in order to avoid any message (even
FATAL); this macro can be set in the source code or even in the CMakeLists.txt
ÀOH��7KH�PDFURV�DUH�ROSCONSOLE_SEVERITY_DEBUG, ROSCONSOLE_SEVERITY_INFO,
ROSCONSOLE_SEVERITY_WARN, ROSCONSOLE_SEVERITY_ERROR, ROSCONSOLE_
SEVERITY_FATAL, and ROSCONSOLE_SEVERITY_NONE.

Debugging and Visualization

[����]

The ROSCONSOLE_MIN_SEVERITY�PDFUR�LV�GHÀQHG�LQ�ros/console.h as DEBUG if not
given. Therefore, we can pass it as a built argument (with -D) or put it before all the
headers; for example, to show only ERROR (or higher) messages we will execute the
following code as we did in the example2 node:

#define ROSCONSOLE_MIN_SEVERITY ROSCONSOLE_SEVERITY_DEBUG

2Q�WKH�RWKHU�KDQG��ZH�KDYH�D�PRUH�ÁH[LEOH�VROXWLRQ�RI�VHWWLQJ�WKH�PLQLPXP�
GHEXJJLQJ�OHYHO�LQ�D�FRQÀJXUDWLRQ�ÀOH��:H�ZLOO�FUHDWH�D�IROGHU��MXVW�IRU�FRQYHQLHQFH��
named config�ZLWK�WKH�ÀOH�chapter3_tutorials.config and this content:

log4j.logger.ros.chapter3_tutorials=DEBUG

We can put any of the levels supported in ROS. Then, we must set the ROSCONSOLE_
CONFIG_FILE�HQYLURQPHQW�YDULDEOH�WR�SRLQW�RXU�ÀOH��+RZHYHU��WKHUH�LV�D�EHWWHU�
option. It consists of using a launch�ÀOH�WKDW�GRHV�WKLV�DQG�DOVR�UXQV�RXU�QRGH�
directly. Therefore, we can extend the launch�ÀOHV�VKRZQ�EHIRUH�WR�GR�VR�ZLWK�
an env element as shown in the following code snippet:

<launch>
 <!-- Logger config -->
 <env name="ROSCONSOLE_CONFIG_FILE"
 value="$(find chapter3_tutorials)/config/chapter3_tutorials.
config"/>

 <!-- Example 1 -->
 <node pkg="chapter3_tutorials" type="example1" name="example1"
 output="screen"/>
</launch>

The environment variable takes the config�ÀOH��GHVFULEHG�SUHYLRXVO\��WKDW�FRQWDLQV�
WKH�ORJJLQJ�OHYHO�VSHFLÀFDWLRQ�IRU�HDFK�QDPHG�ORJJHU��7KHQ��LQ�WKH�launch�ÀOH��RXU�
node is simply run.

*LYLQJ�QDPHV�WR�PHVVDJHV
Since we can put messages in many places inside the same node, ROS allows us
to give a name to each node in our program. This way, later on, it will be easier to
detect from which part of the code is such a message coming. To do so, we use the
ROS_<LEVEL>[_STREAM]_NAMED function as shown in the following code snippet
(taken from the example2 node):

 ROS_INFO_STREAM_NAMED(
 "named_msg",
 "My named INFO stream message; val = " << val
);

Chapter 3

[����]

With named messages, we can go back to the config�ÀOH�DQG�VHW�GLIIHUHQW�GHEXJJLQJ�
OHYHOV�IRU�HDFK�QDPHG�PHVVDJH��7KLV�DOORZV�IRU�ÀQH�WXQLQJ�XVLQJ�WKH�QDPH�RI�WKH�
PHVVDJHV�DV�WKH�FKLOGUHQ�RI�WKH�QRGH�LQ�WKH�VSHFLÀFDWLRQ��IRU�H[DPSOH��ZH�FDQ�VHW�WKH�
named_msg messages that are shown only for the ERROR (or higher) level with (note
WKDW�DOWKRXJK�526�XVHV�ORJ�F[[��WKH�FRQÀJXUDWLRQ�ÀOHV�XVH�WKH�ORJ�M�URRW�QDPH��WKH�
following command line:

log4j.logger.ros.chapter3_tutorials.named_msg=ERROR

&RQGLWLRQDO�DQG�¿OWHUHG�PHVVDJHV
Conditional messages are printed only when a given condition�LV�VDWLVÀHG��,Q�VRPH�
way, they are like conditional breakpoints using debugging messages. To use them,
we have the ROS_<LEVEL>[_STREAM]_COND[_NAMED] functions; note that they can
be named messages as well. The following are the examples of the example2 node:

 // Conditional messages:
 ROS_INFO_STREAM_COND(
 val < 0.,
 "My conditional INFO stream message; val (" << val << ") < 0"
);
 ROS_INFO_STREAM_COND(
 val >= 0.,
 "My conditional INFO stream message; val (" << val << ") >= 0"
);

 // Conditional Named messages:
 ROS_INFO_STREAM_COND_NAMED(
 "cond_named_msg", val < 0.,
 "My conditional INFO stream message; val (" << val << ") < 0"
);
 ROS_INFO_STREAM_COND(
 "cond_named_msg", val >= 0.,
 "My conditional INFO stream message; val (" << val << ") >= 0"
);

Filtered messages are similar to conditional messages in essence, but they allow
us to specify a XVHU�GHÀQHG�ÀOWHU�WKDW�H[WHQGV�ros::console::FilterBase.
:H�PXVW�SDVV�D�SRLQWHU�WR�VXFK�D�ÀOWHU�LQ�WKH�ÀUVW�DUJXPHQW�RI�D�PDFUR with
the format ROS_<LEVEL>[_STREAM]_FILTER[_NAMED]. The following example
is taken from the example2 node:

 struct MyLowerFilter : public ros::console::FilterBase {
 MyLowerFilter(const double& val) : value(val) {}

Debugging and Visualization

[74]

 inline virtual bool isEnabled()
 {
 return value < 0.;
 }

 double value;
 };

 struct MyGreaterEqualFilter : public ros::console::FilterBase {
 MyGreaterEqualFilter(const double& val) : value(val) {}

 inline virtual bool isEnabled()
 {
 return value >= 0.;
 }

 double value;
 };

 MyLowerFilter filter_lower(val);
 MyGreaterEqualFilter filter_greater_equal(val);

 ROS_INFO_STREAM_FILTER(
 &filter_lower,
 "My filter INFO stream message; val (" << val << ") < 0"
);
 ROS_INFO_STREAM_FILTER(
 &filter_greater_equal,
 "My filter INFO stream message; val (" << val << ") >= 0"
);

0RUH�PHVVDJHV�±�RQFH��WKURWWOH��DQG�
FRPELQDWLRQV
It is also possible to control how many times a given message is shown. We can print
it only once with ROS_<LEVEL>[_STREAM]_ONCE[_NAMED]. This kind of message
LV�XVHIXO�LQ�ORRSV�ZKHUH�ZH�GR�QRW�ZDQW�WR�RXWSXW�VR�PDQ\�PHVVDJHV�IRU�HIÀFLHQF\�
reasons, and it is enough to know that we entered.

 for(int i = 0; i < 10; ++i) {
 ROS_INFO_STREAM_ONCE(
 "My once INFO stream message; i = " << i
);
 }

Chapter 3

[����]

This code from the example2 node will show the message only once for i == 0.

However, it is usually better to show the message at every iteration. This is where we
can use throttle messages. They have the same format as that of the ONCE message, but
if you replace ONCE with THROTTLE they will have Duration�DV�WKH�ÀUVW�DUJXPHQW��WKDW�
LV��LW�LV�SULQWHG�RQO\�DW�WKH�VSHFLÀHG�WLPH�LQWHUYDO�

 for(int i = 0; i < 10; ++i) {
 ROS_INFO_STREAM_ONCE(
 2,
 "My once INFO stream message; i = " << i
);
 ros::Duration(1).sleep();
 }

Finally, note that named, conditional, and once/throttle messages can be combined
together for all the available levels.

Nodelets also have some support in terms of logging and debugging messages.
6LQFH�WKH\�KDYH�WKHLU�RZQ�QDPHVSDFH��WKH\�KDYH�D�VSHFLÀF�QDPH�WR�GLIIHUHQWLDWH�WKH�
messages of one nodelet from another. Simply, all the macros shown so far are valid,
but instead of ROS_* we have NODELET_*. These macros will only compile inside
nodelets. Also, they operate by setting up a named logger, with the name of the
nodelet running, so that you can differentiate between the output of two nodelets of
the same type running in the same nodelet manager. Another advantage of nodelets
LV�WKDW�WKH\�ZLOO�KHOS�\RX�WXUQ�RQH�VSHFLÀF�QRGHOHW�WR�WKH�DEBUG level, instead of all
WKH�QRGHOHWV�RI�D�VSHFLÀF�W\SH�

8VLQJ�URVFRQVROH�DQG�U[FRQVROH�WR�PRGLI\�WKH�
GHEXJJLQJ�OHYHO�RQ�WKH�À\
$�ORJJLQJ�PHVVDJH�LQWHJUDWHV�ZLWK�D�VHULHV�RI�WRROV�WR�YLVXDOL]H�DQG�FRQÀJXUH�WKHP��
The ROS framework comes with an API known as rosconsole that was used to some
extent in the previous sections. We advised you to consult the API for more advanced
features, but we believe that this book covers everything a regular robotics user or
developer might need.

$SDUW�IURP�WKH�$3,�WR�FRQÀJXUH�WKH�ORJJLQJ�PHVVDJH�LQ�\RXU�QRGHV��526�SURYLGHV�D�
graphical tool, which is part of the rxtools package. This tool is rxconsole, and you
only have to type it in the command line to see the graphical interface that allows
VHHLQJ��LQVSHFWLQJ��DQG�FRQÀJXULQJ�WKH�ORJJLQJ�VXEV\VWHP�RI�DOO�UXQQLQJ�QRGHV�

Debugging and Visualization

[����]

In order to test this, we are going to use example3, so we will run roscore in one
terminal and the node in another using the following command line:

rosrun chapter3_tutorials example3

Now, with the node running, we will open another terminal and run rxconsole. The
IROORZLQJ�ZLQGRZ�ZLOO�RSHQ��QRWH�WKDW�\RX�FDQ�DOVR�UXQ�U[FRQVROH�ÀUVW��6R�WKH�ORJJLQJ�
message will now appear immediately as shown in the following screenshot:

Once we have our example3 node running, we will start to see messages as shown in
the following screenshot:

Chapter 3

[77]

In the table, we have several columns that give information (aligned in order, as
shown in the preceding screenshot) about the message itself, its severity, the node
that generated the message and the timestamp, the topic (the /rosout aggregator
from the ROS server is usually with it), and the location of the logging macro in
the source code of the node.

We can click on the Pause button to stop receiving new messages, and click on it
again to resume monitoring. For each message in the table, we can click on Pause
to see all its details as shown in the following screenshot for the last message of
the previous screenshot:

2QH�RI�WKH�JUHDW�IHDWXUHV�RI�U[FRQVROH�LV�WKH�DELOLW\�WR�ÀOWHU�PHVVDJHV��7KH�PRVW�
EDVLF�ZD\�WR�ÀOWHU�LV�E\�VHYHULW\�OHYHO��,I�ZH�ZDQW�WR�VHH�RQO\�WKH�FATAL and ERROR
messages in our example, we have to unselect the other severity levels as shown
in the following screenshot:

Debugging and Visualization

[����]

Immediately, we will see only the messages with FATAL and ERROR severity levels.
$GGLWLRQDOO\��ZH�FDQ�ÀOWHU��LQFOXGH�RU�H[FOXGH��E\�PHVVDJH�FRQWHQW��QRGH�QDPH��
location, or topic name, and also using regular expression in our queries. The following
VFUHHQVKRW�VKRZV�DQ�H[DPSOH�LQ�ZKLFK�ZH�ÀOWHUHG�WKH�PHVVDJHV�WR�VKRZ�RQO\�WKRVH�
with the word named in the message for all the severity levels:

1RWH�WKDW�ZH�FDQ�DGG�PRUH�ÀOWHU�HQWULHV��DV�PXFK�DV�ZH�ZDQW��DQG�DOVR�UHPRYH�RU�
GLVDEOH�WKH�RQHV�GHÀQHG�

We can also remove all the messages captured by rxconsole by clicking on the Clear
button. The Setup�EXWWRQ�DOORZV�FRQÀJXULQJ�RI�WKH�GLDJQRVWLF�DJJUHJDWRU�WRSLF��ZKLFK�
is typically rosout_agg, and the number of messages that the GUI keeps in its history
before rolling over (as shown in the following screenshot). Note that the diagnostic
aggregator is just a sink in the ROS server that receives all the logging messages. This
way, we can inspect which devices are failing or how are they working. An advanced
GHYHORSHU�PLJKW�ÀQG�LW�XVHIXO�WR�OHDUQ�DERXW�WKH�GLDJQRVWLF�$3,�WR�XVH�D�KLJKHU�OD\HU�
to build hierarchical layout that is already supported and used for complex systems
or robots.

Chapter 3

[����]

Finally, we can set the logger severity level for each named logger. By default,
HDFK�QRGH�KDV�D�ORJJHU�ZLWK�LWV�SDFNDJH�QDPH��EXW�ZH�DOVR�FDQ�GHÀQH�QDPHG�ORJJHUV�
using the NAMED macros described in the previous sections. For the example3 node,
we have the ros.chapter3_tutorials and ros.chapter3_tutorials.named_msg
loggers. If we click on the Levels... button, we will see the following screenshot:

Here, we can select the example3 node and then the logger in order to set its level.
Note that there are some internal loggers that you can use apart from the ones
mentioned before. In the preceding screenshot, we set the DEBUG severity level
for the ros.chapter3_tutorials.named_msg logger so that all the messages
with this level or higher are shown; that is, all messages in this case.

Debugging and Visualization

[����]

Inspecting what is going on
When our system is running, we might have several nodes and even more topics
publishing messages and connected by subscription among nodes. Also, we might
have some nodes providing services as well. For large systems, it is important to
have some tools that let us see what is running at a given time. ROS provides us
with some basic but powerful tools to do so, and also to detect a failure in any part
of the nodes graph; that is, the architecture that emerges from the connection of
ROS nodes using topics.

/LVWLQJ�QRGHV��WRSLFV��DQG�VHUYLFHV
In our honest opinion, we should start with the most basic level of introspection.
We are going to see how to obtain the list of nodes running, and topics and services
available at a given time. Although extremely simple, this is very useful and robust.

�� To obtain the list of nodes running use:
rosnode list

�� The topics of all nodes are listed using:
rostopic list

�� And, similarly, all services are shown by:
rosservice list

We recommend you to go back to Chapter 2, The ROS Architecture with Examples to see
how these commands also allow you to obtain the message type sent by a particular
WRSLF��DV�ZHOO�DV�LWV�ÀHOGV��XVLQJ�rosmsg show.

Inspecting the node's graph online with
rxgraph
The simplest way to illustrate the current state of an ROS session is with a directed
graph that shows the nodes running on the system and the publisher-subscriber
connections among these nodes through the topics. The ROS framework provides
some tools to generate such a node's graph. The main tool is rxgraph, which shows
the node's graph during the system execution and allows us to see how a node
appears or disappears dynamically.

Chapter 3

[����]

To illustrate how to inspect the nodes, topics, and services with rxgraph, we are going
to run the example4 and example5�QRGHV�VLPXOWDQHRXVO\�ZLWK�WKH�IROORZLQJ�ÀOH�

roslaunch chapter3_tutorials example4_5.launch

The example4 node publishes in two different topics and calls a service. Meanwhile,
example5 subscribes to those topics and also has the service server attend the request
queries and provide the response. Once the nodes are running, we have the node's
topology as shown in the following screenshot:

In the preceding screenshot, we have nodes connected by topics. We also have the
ROS server node as rosout, as well as the rosout topics that publish the log message
for the diagnostic aggregator in the server as we have seen previously. There is also
a panel to the right with information regarding the node selected. In the preceding
screenshot, we have information regarding the server; that is, its IP and port for the
remote nodes, topics, and connections.

Debugging and Visualization

[����]

We can enable the quiet view so that the ROS server is omitted. This is useful for
large systems because it is always there but does not provide any information on
our system's topology itself. To see the node service, we turn on the node and will
see the right-hand panel. In the following screenshot, we have highlighted the
speed service of the example5 node:

When there is a problem in the system, the nodes appear in red all the time (not
just when we hover the mouse over). In such cases, it is useful to select All topics
to show unconnected topics as well. Sometimes, the problems are a consequence
of a misspelled topic name.

When running nodes in different machines, rxgraph shows its great high-level
debugging capabilities since it shows whether the nodes see each other from one
machine to the other.

Chapter 3

[����]

:KHQ�VRPHWKLQJ�ZHLUG�KDSSHQV�±�URVZWI�
ROS also has another tool to detect potential problems in all the elements of a given
package. Just move with roscd to the package you want to analyze, and then run
roswtf. In the case of chapter3_tutorials, we have the following output:

Normally, we should expect no error or warning but some of them are innocuous.
In the preceding screenshot, we see that roswtf has detected that it was not able
to connect with the example4 node. This happens because this node has a sleep
instruction, and if analyzed, this might occur while sleeping. The other errors are
a consequence of this one. The purpose of roswtf is to signal potential problems,
and then we are responsible for checking whether they are real or meaningless
ones, as in the previous case.

Plotting scalar data
Scalar data can easily be plotted with some generic tools already available in ROS.
6FDODU�GDWD�FDQQRW�EH�SORWWHG��UDWKHU�HDFK�VFDODU�ÀHOG�KDV�WR�EH�SORWWHG�VHSDUDWHO\��
This is the reason we talk about scalar data because most nonscalar structures are
better represented with ad hoc visualizers, some of which we will see later; for
instance, images, poses, and orientation/attitude.

Debugging and Visualization

[����]

&UHDWLQJ�D�WLPH�VHULHV�SORW�ZLWK�U[SORW
In ROS, scalar data can be plotted as a time series over the time provided by
the timestamps of the messages. Then, we will plot our scalar data in the y axis.
The tool to do so is rxplot. It has a powerful argument syntax that allows us to
VSHFLI\�VHYHUDO�ÀHOGV�RI�D�VWUXFWXUHG�PHVVDJH��LQ�D�FRQFLVH�PDQQHU�DV�ZHOO��

To show rxplot in action, we are going to use the example4 node since it publishes
a scalar and a vector (nonscalar) in two different topics, which are temp and accel
respectively. The values put in these messages are synthetically generated, so they
have no actual meaning but are useful for plotting demonstration purposes. So, start
by running the node with:

rosrun chapter3_tutorials example4

With rostopic list, you will see the topics temp and accel available. Now, instead
of the typical rostopic echo <topic>, we will use rxplot so that we can see the
values graphically over time.

To plot a message, we must know its format; use rosmg show <msg type> if you
GR�QRW�NQRZ�LW��,Q�WKH�FDVH�RI�VFDODU�GDWD��ZH�DOZD\V�KDYH�D�ÀHOG�FDOOHG�data that has
the actual value. Hence, for the temp topic, which is of the type Int32, we will use:

rxplot /temp/data

With the node running, we will see a plot that changes over time with incoming
messages as shown in the following screenshot:

Chapter 3

[����]

For the accel topic provided by the example node, in which we have a Vector3
message (as you can check with rostopic type /accel���ZH�FDQ�SORW�WKUHH�ÀHOGV�RI�
the vector in a single plot, which is a great feature of rxplot. The Vector3 message
KDV�WKH�ÀHOGV�[��\��DQG�]��:H�FDQ�VSHFLI\�WKH�ÀHOGV�VHSDUDWHG�E\�FRPPDV�����RU�LQ�D�
more concise manner as follows:

rxplot /accel/x:y:z

The plot will look like this:

Debugging and Visualization

[����]

:H�FDQ�DOVR�SORW�HDFK�ÀHOG�LQ�VHSDUDWH�D[HV�DV�VKRZQ�LQ�WKH�QH[W�VFUHHQVKRW��7R�GR�
VR��ZH�VHSDUDWH�HDFK�ÀHOG�E\�D�EODQN�VSDFH��UHPHPEHU�WKDW�ZKHQ�\RX�XVH�FRPPDV��
you must not insert any spaces. Therefore, if we run rxplot /accel/x /accel/y /
accel/z, the plot will show like this:

Other plotting utilities – rxtools
The rxplot tool is part of the rxtools package along with other tools. You might
go to this package to see more GUI or batch tools that can help in the development
of robotic applications and the process of debugging, monitoring, and introspecting.
It is also important to know that being a node (inside this package), these tools can
also be run from a launch�ÀOH�

In the case of rxplot, in order to run it from a launch�ÀOH��ZH�PXVW�SXW�WKH�IROORZLQJ�
code inside it:

 <node pkg="rxtools" type="rxplot" name="accel_plot"
 args="/accel/x:y:z"/>

Chapter 3

[����]

Note that we use the args argument of the node element in the launch�ÀOH�WR�SDVV�
rxplot the arguments.

9LVXDOL]DWLRQ�RI�LPDJHV
In ROS, we have a node that allows us to show images coming from a camera on
WKH�Á\��<RX�RQO\�QHHG�D�FDPHUD�WR�GR�WKLV��,W�LV�DOVR�SRVVLEOH�WR�UHSURGXFH�D�YLGHR�
with a simple node in ROS but here we are going to use your laptop's webcam.
The example6 node implements a basic camera capture program using OpenCV
and ROS bindings to convert cv::Mat images into ROS image messages that can be
published in a topic. This node publishes the camera frames in the /camera topic.

:H�DUH�RQO\�JRLQJ�WR�UXQ�WKH�QRGH�ZLWK�D�ODXQFK�ÀOH�FUHDWHG�WR�GR�VR��7KH�FRGH�LQVLGH�
the node is still new for the reader, but in the upcoming chapters, we will cover how
to work with cameras and images in ROS so that we can come back to this node and
understand every bit of the code:

roslaunch chapter3_tutorials example6.launch

Once the node is running, we can list the topics (rostopic list) and see that the
/camera topic is there. A straightforward way to see that we are actually capturing
images is to see at which frequency we are receiving images in the topic with rostopic
hz /camera. It should be something like 30 Hz usually, but at least some value must
be seen:

subscribed to [/camera]

average rate: 30.131

min: 0.025s max: 0.045s std dev: 0.00529s window: 30

9LVXDOL]LQJ�D�VLQJOH�LPDJH
Being an image, we cannot use rostopic echo /camera because the amount of
LQIRUPDWLRQ�LQ�SODLQ�WH[W�ZRXOG�EH�YHU\�KXJH�DQG�DOVR�GLIÀFXOW�WR�DQDO\]H��+HQFH��
we are going to use the following code:

rosrun image_view image_view image:=/camera

Debugging and Visualization

[����]

This is the image_view node, which shows the images in the given topic (the image
argument) in a window, as shown in the following screenshot:

This way we can visualize every image or frame published in a topic in a very simple
DQG�ÁH[LEOH�PDQQHU��HYHQ�RYHU�D�QHWZRUN��,I�\RX�ULJKW�FOLFN�RQ�WKH�ZLQGRZ��\RX�FDQ�
save the current frame in the disk, usually in your home directory or ~/.ros.

)LUH:LUH�FDPHUDV
In the case of FireWire cameras, ROS also provides a larger set of tools that support
calibration, both mono and stereo, as well as a way to change the camera parameters
dynamically with the reconfigure_gui node. Usually, FireWire cameras allow
FKDQJLQJ�VRPH�FRQÀJXUDWLRQ�SDUDPHWHUV�RI�WKH�VHQVRU��VXFK�DV�WKH�IUDPH�UDWH��VKXWWHU�
speed, and brightness. ROS already comes with a driver for FireWire (IEEE 1394, a and
b) cameras that can be run using the following command:

rosrun camera1394 camera1394_node

2QFH�WKH�FDPHUD�LV�UXQQLQJ��ZH�FDQ�FRQÀJXUH�LWV�SDUDPHWHUV�ZLWK�WKH�reconfigure_
gui�QRGH��LQ�ZKLFK�WKH�ÀUVW�WKLQJ�ZH�GR�LV�WKH�VHOHFWLRQ�RI�WKH�QRGH�ZH�ZDQW�WR�
FRQÀJXUH��:H�RQO\�KDYH�WR�UXQ�WKLV�

rosrun dynamic_reconfigure reconfigure_gui

:H�ZLOO�VHH�DQ�LQWHUIDFH�ZLWK�DOO�WKH�FRQÀJXUDWLRQ�SDUDPHWHUV�DQG�D�VHULHV�RI�VOLGHU�
or comboboxes, depending on the data type, to set its value within the valid limits.
The following screenshot illustrates this for a particular FireWire camera:

Chapter 3

[����]

Note that we will cover how to work with cameras in later chapters. Also, note that
WKH�SDUDPHWHUV�UHFRQÀJXUDWLRQ��IURP�WKH�GHYHORSHU�SRLQW�RI�YLHZ��ZLOO�EH�H[SODLQHG�
in detail in Chapter 6, Computer Vision.

Another important utility that ROS gives to the user is the possibility to calibrate
the camera. It has a calibration interface built on top of the OpenCV calibration API.
We will also cover this in Chapter 6, Computer Vision, when we see how to work with
cameras. This tool is very simple to use; so, once the camera is running, we only have
to show some views of a calibration pattern (usually a checkerboard) using this:

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108
image:=/camera/image_raw camera:=/camera

You can see the checkerboard pattern in the following screenshot:

Debugging and Visualization

[����]

After the calibration, the result will be the so-called camera matrix and distortion
FRHIÀFLHQWV�DORQJ�ZLWK�WKH�YLHZV�XVHG�WR�FRPSXWH�LW��$OWKRXJK�ZH�ZLOO�VHH�WKLV�ODWHU�
in the book, it is important to say that in the case of the FireWire camera, all the
calibration information is saved in a�ÀOH�WKDW�LV�SRLQWHG�E\�WKH�FDPHUD�FRQÀJXUDWLRQ��
Hence, the ROS system allows seamless integration so that we can use the image_
proc tool to rectify the images; that is, to correct the distortion as well as to de-Bayer
the raw images if they were in Bayer.

Working with stereo vision
To some extent, ROS also supports stereo vision. If you have a stereo pair, you can
calibrate both cameras simultaneously as well as the baseline between them. For this,
we will use:

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108
right:=/my_stereo/right/image_raw left:=/my_stereo/left/image_raw right_
camera:=/my_stereo/right left_camera:=/my_stereo/left

This command runs the Python camera calibrator node and receives two initial
parameters that indicate the type of calibration pattern. In particular, the size
VSHFLÀHG�LV�WKH�QXPEHU�RI�LQQHU�FRUQHUV����[���LQ�WKH�H[DPSOH��DQG�WKH�GLPHQVLRQV�
of the square cells. Then, the topics that publish the right and left raw images and
the respective camera information topics are given. In this case, the interface will
show the images from the left and right cameras and the results will be for each as
well. They will include the baseline as well that is useful for some stereo tools.

Chapter 3

[����]

7KH�VWHUHR�VSHFLÀF�WRROV�DOORZ�\RX�WR�FRPSXWH�WKH�GLVSDULW\�LPDJH��UHIHU�WR�WKH�
following image), which is actually a way to obtain a 3D point cloud that represents
the depth of each pixel in the real world. Therefore, the calibration of the camera
and their baseline gives a 3D point cloud, up to some error and noise distribution
that represents the real 3D position of each pixel in the world along with its color
(or texture).

Similar to monocular cameras, we can generate the disparity image using stereo along
ZLWK�WKH�UHFWLÀHG�OHIW�DQG�ULJKW�LPDJHV��LQ�WKLV�FDVH��XVLQJ�stereo_image_proc.

�'�YLVXDOL]DWLRQ
As we have seen in the previous section, there are some devices (such as stereo
cameras, 3D laser, and the Kinect sensor) that provide 3D data, usually in the form of
point clouds (organized or not). For this reason, it is extremely useful to have tools that
visualize this type of data. In ROS, we have rviz, which we will see in the following
section, that integrates an OpenGL interface with a 3D world that represents sensors'
data in a modeled world. To do so, we will see that, for complex systems, the frame of
each sensor and the transformations among them is of crucial importance.

Debugging and Visualization

[����]

9LVXDOL]LQJ�GDWD�RQ�D��'�ZRUOG�XVLQJ�UYL]
With roscore running, we only have to execute the following code to start rviz:

rosrun rviz rviz

We will see the graphical interface in the following screenshot:

To the left, we have the Displays pane, in which we have a tree list of the different
elements in the world, which appears in the middle. In this case, we have some
HOHPHQWV�WKDW�DUH�DOUHDG\�ORDGHG��,QGHHG��WKLV�FRQÀJXUDWLRQ�RU�OD\RXW�LV�VDYHG�LQ�WKH�
config/example7.cvg�ÀOH��ZKLFK�FDQ�EH�ORDGHG�E\�QDYLJDWLQJ�WR�File | 2SHQ�&RQÀJ.

Below the Displays area, we have the Add button that allows the addition of more
elements. Also, note that there are some global options, which are basically tools
WR�VHW�WKH�À[HG�IUDPH�LQ�WKH�ZRUOG�ZLWK�UHVSHFW�WR�ZKLFK�RWKHUV�PLJKW�PRYH��7KHQ��
we have Axes (Axes) and Grid (Grid) as a reference for the rest of the elements.
In this case, for the example7 node, we are going to see Markers (Markers) and
PointCloud2 (PointCloud2).

Finally, at the status bar, we have information regarding time, and to the right are
the menus for the way to navigate in the world and select and manipulate elements.

Now we are going to run the example7 node:

roslaunch chapter3_tutorials example7.launch

Chapter 3

[����]

In rviz, we are going to set frame_id of the marker, that is frame_marker��LQ�WKH�À[HG�
frame. We will see a red cube marker moving as shown in the following screenshot:

6LPLODUO\��LI�ZH�VHW�WKH�À[HG�IUDPH�WR�frame_pc, we will see a point cloud that
represents a plane of 200 x 100 points as shown in the following screenshot:

The list of supported built-in types in rviz also includes cameras and images,
which are shown in a window similar to image_view. In the case of the camera,
its calibration is used and in the case of stereo images it allows us to overlay the
point cloud. We can also see laser scan data from range lasers and range cone
values from IR/SONAR sensors.

Basic elements can also be represented, such as a polygon, several kinds of markers,
a map (usually a 2D occupancy grid map), and even interactive marker objects,
which allow users to set a pose (position and orientation) in the 3D world.

Debugging and Visualization

[����]

For the navigation stack that we will cover in the next chapters, we have several
data types that are also supported such as odometry (plots the robot odometry
poses), and path (draws the path followed by the robot), which is a succession of
pose objects. Among other types, it is also worth mentioning the robot model, which
shows the CAD model of all the robot parts, taking into account the transformation
among the frame of each element. Indeed, TF (transform frame) elements can also
be drawn, which is very useful for debugging the frames in the system; we will see
an example in the next section.

This 3D graphical interface can also be embedded in the new rqt_gui GUI. We can
also develop plugins for new types, and much more. However, we believe that the
information given here is usually enough, and we recommend you consult the rviz
documentation for further details and advanced topics.

7KH�UHODWLRQVKLS�EHWZHHQ�WRSLFV�DQG�IUDPHV
All topics must have a frame if they are publishing data from a particular sensor
that have a physical location in the real world; for example, an accelerometer that is
located in some position with respect to the mass center of the robot. If we integrate
the accelerations to estimate the robot's velocities or its pose, we must take the
transformation between the base (mass center) and the accelerometer frames. In ROS,
the messages with a header, apart from the timestamp (also extremely important to
put or synchronize different messages), can be assigned frame_id, which gives a
name to the frame it belongs to.

But the frames itself are not very useful when we have more than a single device in
our robot, each in a different frame/pose. We need the transformation among them.
Actually, we have a frame transformation tree that usually has the base frame as
its root. Then, we can see in rviz how this and other frames move with respect to
the world frame.

9LVXDOL]LQJ�IUDPH�WUDQVIRUPDWLRQV
To illustrate how to visualize the frame transformations, we are going to use the
turtlesim example. Run the following launch�ÀOH�WKHQ�

roslaunch turtle_tf turtle_tf_demo.launch

This is a very basic example with the purpose of illustrating the TF visualization in
rviz. Note that for the different possibilities offered by the TF API, you should refer
to later chapters of this book, in particular Chapter 7, Navigation Stack – Robot Setups
and Chapter 8, Navigation Stack – Beyond Setups. For now, it is enough to know that
they allow making the computations in one frame and then transforming them to
another, including time delays.

Chapter 3

[����]

It is also important to know that TFs are published at a certain frequency in the
system, so it is like a subsystem where we can traverse the TF tree to obtain the
transformation between any frames in it, and we can do it in any node of our
system just by consulting TF.

If you receive an error, it is probably because the listener died on the launch startup,
as another node that was required was not yet ready; so, please run the following on
another terminal to start it again:

rosrun turtle_tf turtle_tf_listener

Now you should see a window with two turtles (the icon might differ) where one
follows the other. You can control one of the turtles with the arrow keys but with
the focus on the terminal for which the launch�ÀOH�LV�UXQ��7KH�IROORZLQJ�VFUHHQVKRW�
shows how one turtle has been following the other, after moving the one we can
control for some time:

Each turtle has its own frame. We can see them in rviz:

rosrun rviz rviz

Debugging and Visualization

[����]

Now, instead of TurtleSim, we are going to see how the turtles' frames move in
rviz while we PRYH�RXU�WXUWOH�ZLWK�WKH�DUURZ�NH\V��:H�KDYH�WR�VHW�WKH�À[HG�IUDPH�
to /world, and then add the TF tree to the left area. We will see that we have the /
turtle1 and /turtle2 frames, both as children of the /world frame. In the world
representation, the frames are shown as axes. The /world�IUDPH�LV�À[HG�EHFDXVH�ZH�
FRQÀJXUHG�LW�DV�VXFK�LQ�rviz. It is also the root frame and the parent of the turtles'
frames. This is represented with a yellow arrow that has a pink end. Also, set the
view of the world to TopDownOrtho because this makes it easier to see how the
frames move in this case, as they move only on the ground (2D plane). Also, you
PD\�ÀQG�LW�XVHIXO�WR�WUDQVODWH�WKH�ZRUOG�FHQWHU��ZKLFK�LV�GRQH�ZLWK�WKH�PRXVH��
as you do to rotate, but with the Shift key pressed.

In the following screenshot, you can see how the two frames of each turtle
are shown with respect to the /world frame. We advise the user to play with
the example to see it in action, in real time. $OVR��\RX�PLJKW�FKDQJH�WKH�À[HG�
frame. Note that config/example_tf.vcg is provided to give the basic rviz
FRQÀJXUDWLRQ�XVHG�LQ�WKLV�H[DPSOH�

Saving and playing back data
Usually, when we work with robotic systems, the resources are shared, not always
available, or the experiments cannot be done regularly because of the cost or time
required to prepare and perform them. For this reason, it is good practice to record
the data of the experiment session for future analysis and to work, develop, and test
our algorithms. However, the process of saving good data so that we can reproduce
WKH�H[SHULPHQW�RIÁLQH�LV�QRW�WULYLDO��)RUWXQDWHO\��ZH�KDYH�SRZHUIXO�WRROV�LQ�526�WKDW�
already solve this problem.

Chapter 3

[����]

ROS can save all messages published by the nodes through the topics. It has the
DELOLW\�WR�FUHDWH�D�EDJ�ÀOH�WKDW�FRQWDLQV�WKH�PHVVDJHV�DV�WKH\�DUH�ZLWK�DOO�WKHLU�ÀHOGV�
DQG�WLPHVWDPSV��7KLV�DOORZV�UHSURGXFLQJ�WKH�H[SHULPHQW�RIÁLQH�DQG�VLPXODWLQJ�WKH�
real condition, which is the latency of message transmission. Moreover, ROS tools
GR�DOO�WKLV�HIÀFLHQWO\�ZLWK�D�KLJK�EDQGZLGWK�DQG�DQ�DGHTXDWH�PDQQHU�WR�RUJDQL]H�
the saved data.

In the next section, we explain the tools provided by ROS to save and playback
WKH�GDWD�VWRUHG�LQ�EDJ�ÀOHV��ZKLFK�XVH�D�ELQDU\�IRUPDW�GHVLJQHG�IRU�DQG�E\�526�
GHYHORSHUV��:H�ZLOO�DOVR�VHH�KRZ�WR�PDQDJH�WKHVH�ÀOHV��WKDW�LV��LQVSHFW�WKH�FRQWHQW�
(number of messages, topics, and so on), compress, and split or merge several
of them.

:KDW�LV�D�EDJ�¿OH"
$�EDJ�ÀOH�LV�D�FRQWDLQHU�of messages sent by topics that are recording during a session
XVLQJ�D�URERW�RU�VRPH�QRGHV��,Q�EULHI��WKH\�DUH�WKH�ORJJLQJ�ÀOHV�IRU�WKH�PHVVDJHV�
transferred during the execution of our system and allow us to playback everything
even with the time delays, since all messages are recorded with a timestamp; not only
for the timestamp in the header but also for the packets that have it. The difference
EHWZHHQ�WKH�WLPHVWDPS�XVHG�IRU�UHFRUGLQJ�DQG�WKH�RQH�LQ�WKH�KHDGHU�LV�WKDW�WKH�ÀUVW�
one is set by the message that is recorded, while the other is set by the producer/
publisher of the message.

The data stored in a EDJ�ÀOH�LV�LQ�WKH�ELQDU\�IRUPDW��7KH�SDUWLFXODU�VWUXFWXUH�RI�
this container allows for an extremely fast recording bandwidth, which is the most
LPSRUWDQW�FRQFHUQ�ZKLOH�VDYLQJ�GDWD��$OVR��WKH�VL]H�RI�WKH�EDJ�ÀOH�LV�UHOHYDQW�EXW�LV�
XVXDOO\�DW�WKH�H[SHQVH�RI�VSHHG��$Q\ZD\��ZH�KDYH�WKH�RSWLRQ�WR�FRPSUHVV�WKH�ÀOH�
RQ�WKH�Á\�ZLWK�WKH�bz2 algorithm; just use the -j parameter when you record with
rosbag record, as you will see in the following section.

Every message is recorded along with the topic that published it. Therefore, we can
specify which topics to record or just mention all (with -a). Later, when we play the
EDJ�ÀOH�EDFN��ZH�FDQ�DOVR�VHOHFW�D�SDUWLFXODU�VXEVHW�RI�WRSLFV�RI�DOO�WKH�RQHV�LQ�WKH�EDJ�
ÀOH�E\�LQGLFDWLQJ�WKH�QDPHV�RI�WKH�WRSLFV�ZH�ZDQW�WR�EH�SXEOLVKHG�

Debugging and Visualization

[����]

5HFRUGLQJ�GDWD�LQ�D�EDJ�¿OH�ZLWK�URVEDJ
7KH�ÀUVW�WKLQJ�ZH�have to do to start is simply record the data. We are going to use a
very simple system, our example4�QRGH��DV�DQ�H[DPSOH��+HQFH��ZH�ÀUVW�UXQ�WKH�QRGH�

rosrun chapter3_tutorials example4

Now we have two options. First, we can record all the topics:

rosbag record -a

2U��VHFRQG��UHFRUG�RQO\�VRPH�VSHFLÀF��XVHU�GHÀQHG��WRSLFV��,Q�WKLV�FDVH��LW�ZLOO�PDNH�
sense to record only the example4 topics, so we will use the following:

rosbag record /temp /accel

By default, when we run the preceding command, the rosbag program subscribes
WR�WKH�QRGH�DQG�VWDUWV�UHFRUGLQJ�WKH�PHVVDJH�LQ�D�EDJ�ÀOH�LQ�WKH�FXUUHQW�GLUHFWRU\�
ZLWK�GDWD�DV�WKH�QDPH��2QFH�\RX�KDYH�ÀQLVKHG�WKH�H[SHULPHQW�RU�\RX�ZDQW�WR�VWRS�
recording, you only have to hit Ctrl + C. The following is an example of recording
WKH�GDWD�DQG�WKH�UHVXOWLQJ�EDJ�ÀOH�

[INFO] [1357815371.768263730]: Subscribing to /temp

[INFO] [1357815371.771339658]: Subscribing to /accel

[INFO] [1357815371.774950563]: Recording to 2013-01-10-10-56-11.bag.

You can see more options with rosbag help record that includes things such
DV�WKH�EDJ�ÀOH�VL]H��WKH�GXUDWLRQ�RI�WKH�UHFRUGLQJ��DQG�RSWLRQV�WR�VSOLW�WKH�ÀOHV�
LQWR�VHYHUDO�RQHV�RI�D�JLYHQ�VL]H��$V�ZH�KDYH�PHQWLRQHG�EHIRUH��WKH�ÀOH�FDQ�EH�
FRPSUHVVHG�RQ�WKH�Á\��XVLQJ�WKH�-j option). In our honest opinion, this is only
useful for small bandwidths because it also consumes some CPU time and might
produce some message dropping. Also, we can increase the buffer (-b) size for
the recorder in MB, which defaults to 256 MB, but it can be increased to some
GB if the bandwidth is very high (especially with images).

It is also possible to include the call to rosbag record�LQWR�D�ODXQFK�ÀOH��7R�GR�VR��
we must add a node like this:

<node pkg="rosbag" type="record" name="bag_record"
 args="/temp /accel"/>

Note that the topics and other arguments to the command are passed using the
args argument. Also, it is important to say that when running from the launch
ÀOH��WKH�EDJ�ÀOH�LV�FUHDWHG�E\�GHIDXOW�LQ�~/.ros, unless we give the name of the
ÀOH�ZLWK�-o��SUHÀ[��RU�-O (full name).

Chapter 3

[����]

3OD\LQJ�EDFN�D�EDJ�¿OH
Now that we have a EDJ�ÀOH�UHFRUGHG��ZH�FDQ�XVH�LW�WR�SOD\�EDFN�DOO�WKH�PHVVDJHV�
of the topics inside it. We need roscore running and nothing else. Then, we move
WR�WKH�IROGHU�ZLWK�WKH�EDJ�ÀOH�ZH�ZDQW�WR�SOD\��WKHUH�DUH�WZR�H[DPSOHV�LQ�WKH�bag
folder of this chapter's tutorials) and do this:

rosbag play 2013-01-10-10-56-11.bag

We will see the following output:

[INFO] [1357820252.241049890]: Opening bag/2013-01-10-10-56-11.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

 [RUNNING] Bag Time: 1357815375.147705 Duration: 2.300787 / 39.999868

,Q�WKH�WHUPLQDO�ZKHUH�ZH�DUH�SOD\LQJ�WKH�EDJ�ÀOH��ZH�FDQ�SDXVH��KLW�6SDFH�EDU��RU�
move step by step (hit S), and, as usual, use Ctrl + C�WR�ÀQLVK�LW�LPPHGLDWHO\��2QFH�
ZH�UHDFK�WKH�HQG�RI�WKH�ÀOH��LW�ZLOO�FORVH��EXW�WKHUH�LV�DQ�RSWLRQ�WR�ORRS��-l) that
sometimes might be useful.

Automatically, we will see the topics with rostopic list:

/accel

/clock

/rosout

/rosout_agg

/temp

The /clock topic is part of the fact that we can instruct the system clock to simulate
D�IDVWHU�SOD\EDFN��7KLV�FDQ�EH�FRQÀJXUHG�XVLQJ�WKH�-r option. In the /clock topic, the
time for simulation at�D�FRQÀJXUDEOH�IUHTXHQF\�ZLWK�WKH�--hz argument (it defaults
to 100 Hz) is published.

$OVR��ZH�FRXOG�VSHFLI\�D�VXEVHW�RI�WKH�WRSLFV�LQ�WKH�ÀOH�WR�EH�SXEOLVKHG��7KLV�LV�GRQH�
with the --topics�RSWLRQ��,Q�RUGHU�WR�VHH�ZKDW�ZH�KDYH�LQVLGH�WKH�ÀOH��ZH�ZRXOG�XVH�
rosbag info <bag_file>, which we will explain in the next section.

Debugging and Visualization

[100]

,QVSHFWLQJ�DOO�WKH�WRSLFV�DQG�PHVVDJHV�LQ�D�
EDJ�¿OH�XVLQJ�U[EDJ
There are two main ways to see ZKDW�ZH�KDYH�LQVLGH�D�EDJ�ÀOH��7KH�ÀUVW�RQH�LV�YHU\�
simple. We just type rosbag info <bag_file> and the result is something like this:

We have�LQIRUPDWLRQ�DERXW�WKH�EDJ�ÀOH�LWVHOI��VXFK�DV�WKH�FUHDWLRQ�GDWH��GXUDWLRQ��
size, as well as the number of messages inside, and the compression (if any). Then,
ZH�KDYH�WKH�OLVW�RI�GDWD�W\SHV�LQVLGH�WKH�ÀOH��DQG�ÀQDOO\�WKH�OLVW�RI�WRSLFV�ZLWK�WKHLU�
corresponding name, number of messages, and type.

7KH�VHFRQG�ZD\�WR�LQVSHFW�D�EDJ�ÀOH�LV�H[WUHPHO\�SRZHUIXO��,W�LV�D�JUDSKLFDO�LQWHUIDFH�
named rxbag�WKDW�DOVR�DOORZV�SOD\LQJ�EDFN�WKH�ÀOHV��YLHZLQJ�WKH�LPDJHV��LI�DQ\���
plotting scalar data, and also the raw structure of the messages. We only have to pass
WKH�QDPH�RI�WKH�EDJ�ÀOH��DQG�ZH�ZLOO�VHH�VRPHWKLQJ�OLNH�WKH�IROORZLQJ�VFUHHQVKRW�
�IRU�WKH�SUHYLRXV�EDJ�ÀOH��

We have a timeline for all the topics where each message appears with a mark.
In the case of images, we can enable the thumbnails to see them in the timeline
(marked with the mouse pointer).

In the following screenshot, we can see how to access the Raw, Plot, and Image
�LI�WKH�WRSLF�LV�RI�WKH�W\SH�,PDJH��YLHZV�IRU�WKH�WRSLFV�LQ�WKH�ÀOH��7KLV�SRS�XS�PHQX�
appears with a right-click over the timeline.

Chapter 3

[101]

For /accel��ZH�FDQ�SORW�DOO�WKH�ÀHOGV�LQ�D�VLQJOH�D[LV��7R�GR�VR��RQFH�ZH�DUH�LQ�WKH�
3ORW�YLHZ��ZH�FOLFN�RQ�WKH�JHDU�EXWWRQ�LFRQ�DQG�WKHQ�VHOHFW�HYHU\�ÀHOG��1RWH�WKDW�
we can remove them later or create a different axis (in the bottom-right window).
7KH�SORW�LV�JHQHUDWHG�IRU�DOO�WKH�YDOXHV�LQ�WKH�ÀOH��DQG�D�YHUWLFDO�OLQH�VKRZV�WKH�
current position in the playback.

Note that we must have clicked on the Play button at least once to be able to plot the
GDWD��7KHQ�ZH�FDQ�SOD\��SDXVH��VWRS��DQG�PRYH�WR�WKH�EHJLQQLQJ�RU�WKH�HQG�RI�WKH�ÀOH�

The images are straightforward, and a simple window appears with the current
IUDPH�ZLWK�RSWLRQV�WR�VDYH�WKHP�DV�LPDJH�ÀOHV�LQ�WKH�GLVN�

Debugging and Visualization

[�����]

rqt plugins versus rx applications
Since ROS Fuerte, the rx applications or tools are deprecated and we should instead
use the rqt nodes. They are basically the same, only with a few of them incorporated
ZLWK�VPDOO�XSGDWHV��EXJ�À[HV��DQG�QHZ�IHDWXUHV��$OVR��WKH\�FDQ�EH�ORDGHG as plugins
into a single window/application, which is rqt_gui. We show the equivalent for the
tools shown in this chapter in the following list:

�� rxconsole is replaced by rosrun rqt_console rqt_console
�� rxgraph is replaced by rosrun rqt_graph rqt_graph
�� rxplot is replaced by rosrun rqt_plot rqt_plot
�� rxbag is replaced by rosrun rqt_bag rqt_bag

Furthermore, being plugins that can also be run standalone, there exist more tools,
such as a shell, a topic publisher, and a message type viewer. Even rviz has a plugin
named rqt_rviz that can be integrated in the new rqt_gui interface; all this is fully
integrated in ROS Groovy and Hydro where rx tools are deprecated but still in the
EXQGOH��7KH�VDPH�KDSSHQV�IRU�526�)XHUWH��ZKLFK�ZDV�WKH�ÀUVW�UHOHDVH�WR�LQFRUSRUDWH�
the rqt tools.

6XPPDU\
After reading and running the code of this chapter, you will have learned to use
many tools that will enable you to develop robotic systems faster, debug errors,
and visualize your results so you can evaluate their quality or validate them. Some
RI�WKH�VSHFLÀF�FRQFHSWV�DQG�WRROV�\RX�ZLOO�H[SORLW�WKH�PRVW�LQ�\RXU�OLIH�DV�D�URERWLF�
developer are summarized as follows:

�� Now you know how to include logging messages in your code with different
levels of verbosity, which will help you debug errors in your nodes. For this
purpose, you could also use the powerful tools included in ROS, such as
the rxconsole interface. Additionally, you can also inspect or list the nodes
running, the topics published, and the services provided in the whole system
while running. This includes the inspection of the node graph using rxgraph.

�� Regarding the visualization tools, you should be able to plot scalar data
using rxplot for a more intuitive analysis of certain variables published by
your nodes. Similarly, you can view more complex types (nonscalar ones).
This includes images and 3D data using rviz.

�� Finally, recording and playing back the messages of the topics available is now
in your hands with rosbag. And you also know how to view the contents of a
EDJ�ÀOH�ZLWK�rxbag. This allows you to record the data from your experiments
and process them later with your AI or robotics algorithms.

8VLQJ�6HQVRUV�DQG�
Actuators with ROS

When you think of a robot, you would probably think of human-size robots with
DUPV��D�ORW�RI�VHQVRUV��DQG�D�ZLGH�ÀHOG�RI�ORFRPRWLRQ�V\VWHPV�

Now that we know how to write small programs in ROS and manage them, we
are going to work with sensors and actuators, something that can interact with the
real world.

<RX�FDQ�ÀQG�D�ZLGH�OLVW�RI�VXSSRUWHG�GHYLFHV�E\�526�DW�http://www.ros.org/
wiki/Sensors.

In this chapter, we will deal with the following:

�� Cheap and common sensors for your projects
�� �'�VHQVRUV�DV�.LQHFW�DQG�ODVHU�UDQJHÀQGHUV
�� Using Arduino to connect more sensors or actuators

We know that it is impossible to explain all types of sensors in this chapter. For this
reason, we have selected some of the most commonly used ones and those which are
affordable for most users—regular, sporadic, or amateur.

6HQVRUV�DQG�DFWXDWRUV�FDQ�EH�RUJDQL]HG�LQ�GLIIHUHQW�FDWHJRULHV��UDQJHÀQGHUV��FDPHUDV��
SRVH�HVWLPDWLRQ�GHYLFHV��DQG�VR�RQ��7KHVH�ZLOO�KHOS�\RX�ÀQG�WKH�VHQVRU�RU�DFWXDWRU�WKDW�
you are looking for more quickly.

Using Sensors and Actuators with ROS

[104]

8VLQJ�D�MR\VWLFN�RU�JDPHSDG
I am sure that at one point or another you have used a joystick or a gamepad of a
video console.

A joystick is nothing more than a series of buttons and potentiometers. With this
device, you can perform or control a wide range of actions.

In ROS, a joystick is used to telecontrol a robot for changing its velocity or direction.

Before we start, we are going to install some packages. To install these packages in
Ubuntu, execute the following:

$ sudo apt-get install ros-fuerte-joystick-drivers
$ sudo apt-get install ros-fuerte-joystick-drivers-tutorials

,Q�WKHVH�SDFNDJHV��\RX�ZLOO�ÀQG�VRPH�FRGH�WR�OHDUQ�KRZ�WR�XVH�WKH�MR\VWLFN�DQG�D�
guide to create our packages.

First of all, connect your joystick to your computer. Now we are going to check if the
joystick is recognized.

$ ls /dev/input/

We will see the following output:

by-id event0 event2 event4 event6 event8 js0 mouse0

by-path event1 event3 event5 event7 event9 mice

The port created is js0; we can check if it is working with the command jstest.

$ sudo jstest /dev/input/js0

Axes: 0: 0 1: 0 2: 0 Buttons: 0:off 1:off 2:off 3:off 4:off
5:off 6:off 7:off 8:off 9:off 10:off

Chapter 4

[�����]

Our joystick, Logitech Attack 3, has 3 axes and 11 buttons, and if we move the
joystick, the values change.

Once you have checked the joystick, we are going to test it in ROS. To do this, you
can use the joy and joy_node packages.

$ rosrun joy joy_node

If everything is OK, you will see this:

[INFO] [1357571588.441808789]: Opened joystick: /dev/input/js0.
deadzone_: 0.050000.

+RZ�GRHV�MR\BQRGH�VHQG�MR\VWLFN�
PRYHPHQWV"
With the joy_node package active, we are going to see the messages sent by this
node. This will help us understand how it is sending the information of axes and
buttons.

To see the messages sent by the node, we can use this command:

$ rostopic echo /joy

And then we can see each message sent.

header:

seq: 157

stamp:

 secs: 1357571648

 nsecs: 430257462

 frame_id: ''

axes: [-0.0, -0.0, 0.0]

buttons: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

You will see two main vectors, one for axes and another for buttons. Obviously, these
vectors are used to publish the states of the buttons and axes of the real hardware.

Using Sensors and Actuators with ROS

[�����]

If you want to know the message type, type the following command line in a shell:

$ rosnode type /joy

You will then obtain the type used by the message; in this case, it is sensor_msgs/
Joy.

1RZ�WR�VHH�WKH�ÀHOGV�XVHG�LQ�WKH�PHVVDJH��XVH�WKH�IROORZLQJ�FRPPDQG�OLQH�

$ rosmsg show sensor_msgs/Joy

And you will see this:

This is the message structure that you must use if you want to use a joystick with your
developments. In the next section, you will learn how to write a node that subscribes to
the joystick topic and generate moving commands to move the turtlesim.

8VLQJ�MR\VWLFN�GDWD�WR�PRYH�D�WXUWOH�LQ�
WXUWOHVLP
Now, we are going to create a node that gets data from joy_node and publishes
topics to control turtlesim.

First, it is necessary to know the topic name where we will publish the messages. So,
we are going to start turtlesim and do some investigations.

$ rosrun turtlesim turtlesim_node

To see the topic list, use the following command line:

$ rostopic list

You will then see the following output where turtle1/command_velocity is the
topic we will use:

Chapter 4

[107]

Now we need to know the topic type. Use the following command line to see it:

$ rostopic type /turtle1/command_velocity

You will see this output:

turtlesim/Velocity

To know the content of this message, execute the following command line:

$ rosmsg show turtlesim/Velocity

<RX�ZLOO�WKHQ�VHH�WKH�WZR�ÀHOGV��ZKLFK�DUH�XVHG�WR�VHQG�WKH�YHORFLW\�

float32 linear

float32 angular

OK, now that we have localized the topic and the structure to use, it is time to create
a program to generate velocity commands using data from the joystick.

&UHDWH�D�QHZ�ÀOH��example.1.cpp, in the chapter4_tutorials/src directory and
type in the following code snippet:

#include<ros/ros.h>
#include<turtlesim/Velocity.h>
#include<sensor_msgs/Joy.h>
#include<iostream>

using namespace std;

class TeleopJoy{
public:
 TeleopJoy();
private:
 void callBack(const sensor_msgs::Joy::ConstPtr& joy);
 ros::NodeHandle n;
 ros::Publisher pub;
 ros::Subscriber sub;
 int i_velLinear, i_velAngular;
};

TeleopJoy::TeleopJoy()
{
n.param("axis_linear",i_velLinear,i_velLinear);
n.param("axis_angular",i_velAngular,i_velAngular);

Using Sensors and Actuators with ROS

[�����]

pub = n.advertise<turtlesim::Velocity>("turtle1/command_velocity",1);
sub = n.subscribe<sensor_msgs::Joy>("joy", 10, &TeleopJoy::callBack,
this);
}

void TeleopJoy::callBack(const sensor_msgs::Joy::ConstPtr& joy)
{
turtlesim::Velocity vel;
vel.angular = joy->axes[i_velAngular];
vel.linear = joy->axes[i_velLinear];
pub.publish(vel);
}

int main(int argc, char** argv)
{
ros::init(argc, argv, "teleopJoy");
 TeleopJoy teleop_turtle;

ros::spin();
}

Now we are going to break the code to explain how it works.

In the main function, we create an instance of the class TeleopJoy.

int main(int argc, char** argv)
{
 ...
 TeleopJoy teleop_turtle;
 ...

,Q�WKH�FRQVWUXFWRU��IRXU�YDULDEOHV�DUH�LQLWLDOL]HG��7KH�ÀUVW�WZR�YDULDEOHV�DUH�ÀOOHG�
using data from the Parameter Server. These variables are joystick axes. The next two
variables are the publisher and subscriber. The publisher will publish a topic with
the type turtlesim::Velocity; this type is declared in the turtlesim package. The
subscriber will get data from the topic with the name joy. The node that is handling
the joystick sends this topic.

TeleopJoy::TeleopJoy()
{
n.param("axis_linear",i_velLinear,i_velLinear);
n.param("axis_angular",i_velAngular,i_velAngular);

pub = n.advertise<turtlesim::Velocity>("command_velocity",1);
sub = n.subscribe<sensor_msgs::Joy>("joy", 10, &TeleopJoy::callBack,
this);

}

Chapter 4

[�����]

Each time the node receives a message, the function callBack is called. We create a
new variable with the name vel, which will be used to publish data. The values of
the axes of the joystick are assigned to the vel variable. In this part, you can make
some process with the data received before publishing it.

void TeleopJoy::callBack(const sensor_msgs::Joy::ConstPtr& joy)
{
turtlesim::Velocity vel;
vel.angular = joy->axes[i_velAngular];
vel.linear = joy->axes[i_velLinear];
pub.publish(vel);
}

Finally, the topic is published using pub.publish(vel).

We are going to create a launch�ÀOH�IRU�WKLV�H[DPSOH��,Q�WKH�launch�ÀOH��ZH�GHFODUH�
some data for the Parameter Server and launch the joy and example1 nodes.

&RS\�WKH�IROORZLQJ�FRGH�VWHS�WR�D�QHZ�ÀOH��example1.launch, in the chapter4_
tutorials/src directory:

<launch>

<node pkg="turtlesim" type="turtlesim_node" name="sim"/>
<node pkg="chapter4_tutorials" type="example1" name="example1" />
<param name="axis_linear" value="1" type="int" />
<param name="axis_angular" value="0" type="int" />

<node respawn="true" pkg="joy"type="joy" name="teleopJoy">
 <param name="dev" type="string" value="/dev/input/js0" />
 <param name="deadzone" value="0.12" />
</node>

</launch>

You will notice that in the launch�ÀOH��WKHUH�DUH�WKUHH�GLIIHUHQW�QRGHV��example1, sim,
and joy.

There are four parameters in the launch�ÀOH��WKHVH�SDUDPHWHUV�ZLOO�DGG�GDWD�WR�WKH�
Parameter Server, and it will be used by our node. The axis_linear and axis_
angular�SDUDPHWHUV�ZLOO�EH�XVHG�WR�FRQÀJXUH�WKH�D[LV�RI�WKH�MR\VWLFN��,I�\RX�ZDQW�
WR�FKDQJH�WKH�D[LV�FRQÀJXUDWLRQ��\RX�RQO\�QHHG�WR�FKDQJH�WKH�YDOXH�DQG�SXW�WKH�
number of the axes you want to use. The dev and deadzone parameters will be used
WR�FRQÀJXUH�WKH�SRUW�ZKHUH�WKH�MR\VWLFN�LV�FRQQHFWHG��DQG�WKH�GHDG�]RQH�LV�WKH�UHJLRQ�
of movement that is not recognized by the device.

Using Sensors and Actuators with ROS

[110]

To run the launch�ÀOH��XVH�WKH�IROORZLQJ�FRPPDQG�OLQH�

$ roslaunch chapter4_tutorials example1.launch

You can see if HYHU\WKLQJ�LV�ÀQH�E\�FKHFNLQJ�WKH�UXQQLQJ�QRGHV�DQG�WKH�WRSLF�OLVW�
using rosnode list and rostopic list. If you want to see it graphically, use
rxgraph.

8VLQJ�D�ODVHU�UDQJH¿QGHU�±�+RNX\R�85*�
04lx
In mobile robotics, it is very important to know where the obstacles are, the outline
of a room, and so on. The robots use maps to navigate and move across unknown
spaces. The sensor used for these purposes is Lidar. This sensor is used to measure
distances between the robot and objects.

In this section, you will learn how to use a low-cost Lidar that is widely used in
robotics. This sensor is the Hokuyo URG-04lx�UDQJHÀQGHU��<RX�FDQ�REWDLQ�PRUH�
information in the following link: http://www.hokuyo-aut.jp/. The Hokuyo
UDQJHÀQGHU�LV�D�GHYLFH�XVHG�IRU�QDYLJDWLRQ�DQG�EXLOGLQJ�PDSV�LQ�UHDO�WLPH�

In this section, you will learn how to use it using the standard drivers in ROS and
how to modify the data.

The model +RNX\R�85*���O[�LV�D�ORZ�FRVW�UDQJHÀQGHU�FRPPRQO\�XVHG�LQ�URERWLFV��
It has a very good resolution and is very easy to use.

To start with, we are going to install the drivers for the laser.

$ sudo apt-get install ros-fuerte-laser-drivers

Once installed, we are going to check if everything is OK. Connect your laser and
FKHFN�LI�WKH�V\VWHP�FDQ�GHWHFW�LW�DQG�LI�LW�LV�FRQÀJXUHG�FRUUHFWO\�

$ ls -l /dev/ttyACM0

Chapter 4

[111]

When the laser is connected, the system can see it using the following command line:

crw-rw---- 1 root dialout 166, 0 Jan 13 11:09 /dev/ttyACM0

In our case, we�QHHG�WR�UHFRQÀJXUH�WKH�ODVHU�GHYLFH�WR�JLYH�526�WKH�DFFHVV�WR�XVH�LW��
that is, we need to give appropriate permissions.

$ sudo chmod a+rw /dev/ttyACM0

You will then see the following output:

crw-rw-rw- 1 root dialout 166, 0 Jan 13 11:09 /dev/ttyACM0

Once everything is OK, we are going to switch on the laser. Start roscore in one
shell and in another shell execute the following command:

$ rosrun hokuyo_node hokuyo_node

,I�HYHU\WKLQJ�LV�ÀQH��\RX�ZLOO�VHH�WKH�IROORZLQJ�RXWSXW�

[INFO] [1358076340.184643618]: Connected to device with ID: H1000484

8QGHUVWDQGLQJ�KRZ�WKH�ODVHU�VHQGV�GDWD�LQ�
ROS
To check if the node is sending data, use rostopic.

$ rostopic list

And you will see the following topics:

/diagnostics

/hokuyo_node/parameter_descriptions

/hokuyo_node/parameter_updates

/rosout

/rosout_agg

/scan

The topic /scan is the topic where the node is publishing. The type of data used by
the node is shown as follows:

$ rostopic type /scan

You will then see the message type used to send information of the laser.

sensor_msgs/LaserScan

Using Sensors and Actuators with ROS

[�����]

You can see the structure of the message using $ rosmsg show sensor_msgs/
LaserScan.

To learn a little bit more on how the laser works and what data it is sending, we are
going to use the rostopic command to see a real message.

$ rostopic echo /scan

Then you will see the following message sent by the laser:

header:

seq: 3895

stamp:

 secs: 1358076731

 nsecs: 284896750

 frame_id: laser

...

ranges: [1.1119999885559082, 1.1119999885559082, 1.1109999418258667, ...]

intensities: []

7KHVH�GDWD�DUH�GLIÀFXOW�WR�XQGHUVWDQG�IRU�KXPDQV��,I�\RX�ZDQW�WR�VHH�WKH�GDWD�LQ�D�
more friendly and graphical way, it is possible do it using rviz. Type the following
FRPPDQG�OLQH�LQ�D�VKHOO�WR�ODXQFK�UYL]�ZLWK�WKH�FRUUHFW�FRQÀJXUDWLRQ�ÀOH�

$ rosrun rviz rviz -d 'rospack find hokuyo_node'/hokuyo_test.vcg

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 4

[�����]

The following screenshot shows a graphical representation of the message:

You will see the contour on the screen. If you move the laser sensor, you will see the
contour changing.

$FFHVVLQJ�WKH�ODVHU�GDWD�DQG�PRGLI\LQJ�LW
Now, we are going to make a node get the laser data, do something with it, and
publish the new data. Perhaps, this will be useful sometime, and with this example,
you will learn how to do it.

Copy the following code snippet to the example2.cpp�ÀOH�LQ�\RXU�/chapter4_
tutorials/src directory:

#include <ros/ros.h>
#include "std_msgs/String.h"
#include <sensor_msgs/LaserScan.h>
#include<stdio.h>

using namespace std;
class Scan2{
public:

Using Sensors and Actuators with ROS

[114]

 Scan2();
private:
 ros::NodeHandle n;
 ros::Publisher scan_pub;
 ros::Subscriber scan_sub;
 void scanCallBack(const sensor_msgs::LaserScan::ConstPtr& scan2);
};

Scan2::Scan2()
{
scan_pub = n.advertise<sensor_msgs::LaserScan>("/scan2",1);
scan_sub = n.subscribe<sensor_msgs::LaserScan>("/scan",1,
&Scan2::scanCallBack, this);
}

void Scan2::scanCallBack(const sensor_msgs::LaserScan::ConstPtr&
scan2)
{
int ranges = scan2->ranges.size();
 //populate the LaserScan message
sensor_msgs::LaserScan scan;
 scan.header.stamp = scan2->header.stamp;
 scan.header.frame_id = scan2->header.frame_id;
 scan.angle_min = scan2->angle_min;
 scan.angle_max = scan2->angle_max;
 scan.angle_increment = scan2->angle_increment;
 scan.time_increment = scan2->time_increment;
scan.range_min = 0.0;
 scan.range_max = 100.0;
scan.ranges.resize(ranges);

for(int i = 0; i < ranges; ++i){
 scan.ranges[i] = scan2->ranges[i] + 1;
 }
scan_pub.publish(scan);
}

int main(int argc, char** argv){
ros::init(argc, argv, "example2_laser_scan_publisher");
 Scan2 scan2;
ros::spin();
}

Chapter 4

[�����]

We are going to break the code and see what it is doing.

In the main function, we initialize the node with the name example2_laser_scan_
publisher��DQG�FUHDWH�DQ�LQVWDQFH�RI�WKH�FODVV�WKDW�ZH�KDYH�FUHDWHG�LQ�WKH�ÀOH�

In the constructor, we will create two topics: one of them will subscribe to the other
topic, which is the original data from the laser. The second topic will publish the new
PRGLÀHG�GDWD�IURP�WKH�ODVHU�

This example is very simple; we are only going to add the 1 unit to data received
from the laser topic and publish it again. We do that in the scanCallBack()
IXQFWLRQ��7DNH�WKH�LQSXW�PHVVDJH�DQG�FRS\�DOO�WKH�ÀHOGV�WR�DQRWKHU�YDULDEOH�DQG�WDNH�
WKH�ÀHOG�ZKHUH�WKH�GDWD�LV�VWRUHG�DQG�DGG�WKH�1 unit. Once the new value is stored,
publish the new topic.

void Scan2::scanCallBack(const sensor_msgs::LaserScan::ConstPtr&
scan2)
{
 ...
sensor_msgs::LaserScan scan;
 scan.header.stamp = scan2->header.stamp;
 ...
 ...
 scan.range_max = 100.0;
scan.ranges.resize(ranges);

for(int i = 0; i < ranges; ++i){
 scan.ranges[i] = scan2->ranges[i] + 1;
 }

scan_pub.publish(scan);
}

&UHDWLQJ�D�ODXQFK�¿OH
To launch everything,�ZH�DUH�JRLQJ�WR�FUHDWH�D�ODXQFK�ÀOH��example2.launch.

<launch>
 <node pkg="hokuyo_node" type="hokuyo_node" name="hokuyo_node"/>
 <node pkg="rviz" type="rviz" name="rviz"
 args="-d $(find chapter4_tutorials)/example2.vcg"/>

 <node pkg="chapter4_tutorials" type="example2" name="example2" />
</launch>

Using Sensors and Actuators with ROS

[�����]

Now if you launch the example2.launch�ÀOH��WKUHH�QRGHV�ZLOO�VWDUW��hokuyo_node,
rviz, and example2. You will see the rviz screen with the two-lasers contour. The
green contour is the new data.

8VLQJ�WKH�.LQHFW�VHQVRU�WR�YLHZ�LQ��'
The Kinect sensor is a ÁDW�EODFN�ER[�WKDW�VLWV�RQ�D�VPDOO�SODWIRUP�ZKHQ�SODFHG�RQ�D�
table or shelf near the television you're using with your Xbox 360. This device has
the following three sensors that we can use for vision and robotics tasks:

�� A color VGA video camera to see the world in color
�� The depth sensor, which is an infrared projector and a monochrome CMOS

sensor working together, to see objects in 3D
�� A multiarray microphone that is used to isolate the voices of the players

from the noise in the room

Chapter 4

[117]

In ROS, we are going to use two of these sensors: the RGB camera and the depth
sensor. In the latest version of ROS, you can even use three.

Before we start using it, we need to install the packages and drivers. Use the
following command lines to install it:

$ sudo apt-get install ros-fuerte-openni-camera ros-fuerte-openni-launch

$ rosstack profile

$ rospackage profile

Once installed, plug the Kinect sensor and we will run the nodes to start using it.
In a shell, start roscore. In another shell run the following command lines:

$ rosrun openni_camera openni_node

$ openni_launch openni.launch

,I�HYHU\WKLQJ�JRHV�ÀQH��\RX�ZLOO�QRW�VHH�DQ\�HUURU�PHVVDJHV�

+RZ�GRHV�.LQHFW�VHQG�GDWD�IURP�WKH�VHQVRUV�
and how to see it?
Now we are going to see what we can do with these nodes. List the topics that you
have created using this command:

$ rostopic list

Using Sensors and Actuators with ROS

[�����]

Then, you will see a lot of topics, but the most important ones for us are the
following:

...
/camera/rgb/image_color
/camera/rgb/image_mono
/camera/rgb/image_raw
/camera/rgb/image_rect
/camera/rgb/image_rect_color
...

We will see a lot of topics created by nodes. If you want to see one of the sensors, the
RGB camera for example, you can use the topic /camera/rgb/image_color. To see
the image from the sensor, we are going to use the image_view package. Type the
following command in a shell:

$ rosrun image_view image_view image:=/camera/rgb/image_color

Note that we need to rename (remap) the image topic to /camera/rgb/image_
color��,I�HYHU\WKLQJ�LV�ÀQH��D�QHZ�ZLQGRZ�DSSHDUV�VKRZLQJ�WKH�LPDJH�IURP�.LQHFW�

If you want to see the depth sensor, you can do the same just by changing the topic
in the last command line:

$ rosrun image_view image_view image:=/camera/depth/image

You will then see an image similar to the following output:

Another important topic is the one that sends the point cloud data. This kind of data
LV�D��'�UHSUHVHQWDWLRQ�RI�WKH�GHSWK�LPDJH��<RX�FDQ�ÀQG�WKLV�GDWD�LQ�WKH�IROORZLQJ�
topics: /camera/depth/points, /camera/depth_registered/points and so on.

We are going to see what type of message this is. To do this, use rostopic type.
7R�VHH�WKH�ÀHOGV�RI�D�PHVVDJH��ZH�FDQ�XVH�rostopic type /topic_name | rosmsg
show. In this case, we are going to use the /camera/depth/points topic.

Chapter 4

[�����]

$ rostopic type /camera/depth/points | rosmsg show

7R�VHH�WKH�RIÀFLDO�VSHFLÀFDWLRQ�RI�WKH�PHVVDJH��YLVLW�http://ros.org/doc/api/
sensor_msgs/html/msg/PointCloud2.html.

If you want to visualize this type of data, run rviz in a new shell and add a new
PointCloud2 data visualization. Depending on your computer, you will see a 3D
image in real time; if you move in front of the sensor, you will see yourself moving
in 3D as you can see in the following screenshot:

&UHDWLQJ�DQ�H[DPSOH�WR�XVH�.LQHFW
Now we are going to implement a�SURJUDP�WR�JHQHUDWH�D�QRGH�WKDW�ÀOWHUV�WKH�SRLQW�
FORXG�IURP�WKH�.LQHFW�VHQVRU��7KLV�QRGH�ZLOO�DSSO\�D�ÀOWHU�WR�UHGXFH�WKH�QXPEHU�RI�
points on the original data. It will make a down sampling of the data.

&UHDWH�D�QHZ�ÀOH��example3.cpp, in your chapter4_tutorials/src directory and
type in the following code snippet:

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/ros/conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>

Using Sensors and Actuators with ROS

[�����]

ros::Publisher pub;
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
 // ... do data processing
sensor_msgs::PointCloud2 output;
pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;
sor.setInputCloud(input);
sor.setLeafSize(0.02f,0.02f,0.02f);
sor.filter(output);

 // Publish the data
 pub.publish (output);
}

intmain (int argc, char** argv)
{
 // Initialize ROS
 ros::init (argc, argv, "my_pcl_tutorial");
ros::NodeHandle nh;

 // Create a ROS subscriber for the input point cloud
ros::Subscriber sub = nh.subscribe ("/camera/depth/points", 1, cloud_
cb);

 // Create a ROS publisher for the output point cloud
pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);

 // Spin
 ros::spin ();
}

This sample is based on the tutorial of Point Cloud Library (PCL). You can see
it at http://pointclouds.org/documentation/tutorials/voxel_grid.
php#voxelgrid.

All the work is done in the cb() function. This function is called when a message
arrives. We create a variable sor with the VoxelGrid type, and the range of the grid
is changed in sor.setLeafSize(). These values will change the grid used for the
ÀOWHU��,I�\RX�LQFUHPHQW�WKH�YDOXH��\RX�ZLOO�REWDLQ�OHVV�UHVROXWLRQ�DQG�OHVV�SRLQWV�RQ�
the point cloud.

cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
...
 pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;

Chapter 4

[�����]

 ...
 sor.setLeafSize(0.02f,0.02f,0.02f);
...
}

If we open rviz now with the new node running, we will see the new point cloud on
the window, and you will directly notice that the resolution is less than the original
data.

On rviz, you can see the number of points that a message has. For original data, we
can see that the number of points is 2,19,075. With the new point cloud, we obtain a
number of points of 16,981. As you can see, it is a huge reduction of data.

At http://pointclouds.org/��\RX�ZLOO�ÀQG�PRUH�ÀOWHUV�DQG�WXWRULDOV�RQ�KRZ�WR�
use this kind of data.

8VLQJ�VHUYRPRWRUV�±�'\QDPL[HO
In mobile robots, servomotors are widely used. These kind of actuators are used to
move sensors, wheels, or robotic arms. A low-cost solution is to use RC servomotors.
It provides a movement range of 180 degrees and a high torque for the existing
servomotors.

Using Sensors and Actuators with ROS

[�����]

The servomotor that we will explain in this section is a new type of servomotor
designed and used for robotics. This is the Dynamixel servomotor.

Dynamixel is a line-up, high-performance networked actuator for robots developed by
ROBOTIS, a Korean manufacturer. ROBOTIS is also the developer and manufacturer
for OLLO, Bioloid, and DARwIn-OP DXL. These are used by numerous companies,
universities, and hobbyists due to their versatile expansion capability, powerful
feedback functions, position, speed, internal temperature, input voltage, and other
IHDWXUHV��DQG�LWV�VLPSOH�GDLV\�FKDLQ�WRSRORJ\�IRU�VLPSOLÀHG�ZLULQJ�FRQQHFWLRQV�

In the following image, you can see the Dynamixel AX-12 and the USB interface.
Both are used in this example.

First, we are going to install the necessary packages and drivers. Type the following
command line in a shell:

$ sudo apt-get install ros-fuerte-dynamixel-motor

Once installed, connect the dongle to the computer and check if it is detected.
Normally, it will create a new port with the name ttyUSBX inside your /dev/ folder.
If you see this port, everything is OK, and now we can start the nodes to play a little
with the servomotor.

In a shell, start roscore and in another shell, type the following command line:

$ roslaunch dynamixel_tutorials controller_manager.launch

If the motor or motors are connected, you will see the motors detected by the driver.
,Q�RXU�FDVH��D�PRWRU�ZLWK�WKH�,'���LV�GHWHFWHG�DQG�FRQÀJXUHG�

process[dynamixel_manager-1]: started with pid [3966]

[INFO] [WallTime: 1359377042.681841] pan_tilt_port: Pinging motor IDs 1
through 25...

[INFO] [WallTime: 1359377044.846779] pan_tilt_port: Found 1 motors - 1
AX-12 [6], initialization complete.

Chapter 4

[�����]

+RZ�GRHV�'\QDPL[HO�VHQG�DQG�UHFHLYH�
FRPPDQGV�IRU�WKH�PRYHPHQWV"
Once you have launched the controller_manager.launch�ÀOH��\RX�ZLOO�VHH�D�OLVW�RI�
topics. Remember to use the following command line to see these topics:

$ rostopic list

7KHVH�WRSLFV�ZLOO�VKRZ�WKH�VWDWH�RI�WKH�PRWRUV�FRQÀJXUHG�

/diagnostics

/motor_states/pan_tilt_port

/rosout

/rosout_agg

If you see /motor_states/pan_tilt_port with the rostopic echo command, you
will see the state of all motors, in our case, only the motor with the ID 6; however, we
cannot move the motors with these topics, so we need to run the next launch�ÀOH�WR�
do it.

This launch�ÀOH�ZLOO�FUHDWH�WKH�QHFHVVDU\�WRSLFV�WR�PRYH�WKH�PRWRUV�

$ roslaunch dynamixel_tutorials controller_spawner.launch

The topic list will have two new topics added to the list. One of the new topics will
be used to move the servomotor as follows:

/diagnostics

/motor_states/pan_tilt_port

/rosout

/rosout_agg

/tilt_controller/command

/tilt_controller/state

To move the motor, we are going to use /tilt_controller/command that will
publish a topic with the rostopic pub�FRPPDQG��)LUVW��\RX�QHHG�WR�VHH�WKH�ÀHOGV�
of the topic and the type. To do that, use the following command lines:

$ rostopic type /tilt_controller/command

std_msgs/Float64

Using Sensors and Actuators with ROS

[�����]

As you can see, it is a Float64 variable. This variable is used to move the motor to a
position measured in radians. So, to publish a topic, use the following:

$ rostopic pub /tilt_controller/command std_msgs/Float64 -- 0.5

Once the command is executed, you will see the motor moving and it will stop at 0.5
radians or 28.6478898 degrees.

&UHDWLQJ�DQ�H[DPSOH�WR�XVH�WKH�VHUYRPRWRU
Now, we are going to show you how to move the motor using a node. Create a new
ÀOH��example4.cpp, in your /chapter4_tutorials/src directory with the following
code snippet:

#include<ros/ros.h>
#include<std_msgs/Float64.h>
#include<stdio.h>

using namespace std;

class Dynamixel{
 private:
 ros::NodeHandle n;
 ros::Publisher pub_n;
 public:
 Dynamixel();
 int moveMotor(double position);
};

Dynamixel::Dynamixel(){
 pub_n = n.advertise<std_msgs::Float64>("/tilt_controller/
command",1);
}
int Dynamixel::moveMotor(double position)
{
 std_msgs::Float64 aux;
 aux.data = position;
 pub_n.publish(aux);
 return 1;
}

int main(int argc,char** argv)
{
 ros::init(argc, argv, "example4_move_motor");
 Dynamixel motors;

 float counter = -180;
 ros::Rate loop_rate(100);

Chapter 4

[�����]

 while(ros::ok())
 {
 if(counter < 180)
 {
 motors.moveMotor(counter*3.14/180);
 counter++;
 }else{
 counter = -180;
 }
 loop_rate.sleep();
 }
}

This node will move the motor continuously from -180 to 180 degrees. It is a simple
example, but you can use it to make complex movements or control more motors.
We assume that you understand the code and it is not necessary to explain it. Note
that you are publishing data to the /tilt_controller/command topic; this is the
name of the motor.

8VLQJ�$UGXLQR�WR�DGG�PRUH�VHQVRUV�DQG�
actuators
Arduino�LV�DQ�RSHQ�VRXUFH�HOHFWURQLFV�SURWRW\SLQJ�SODWIRUP�EDVHG�RQ�ÁH[LEOH��HDV\�
to-use hardware and software. It's intended for artists, designers, hobbyists, and
anyone interested in creating interactive objects or environments.

ROS can use this type of device with the package rosserial. Basically, Arduino is
connected to the computer using a serial connection and data is transmitted using
this port. With rosserial, you can also use a lot of devices controlled by a serial
connection; for example, GPS, servo controllers, and so on.

Using Sensors and Actuators with ROS

[�����]

First, we need to install the package. To do this, we use the following command lines:

$ sudo apt-get install ros-fuerte-rosserial
$ rosstack profile
$ rospackage profile

OK, we assume that you have the Arduino IDE installed. If not, just follow the steps
described at http://arduino.cc/en/Main/Software.

Once you have the package and the IDE installed, it is necessary to copy ros_lib
from the rosserial package to the sketchbook library folder, which is created on
your computer after running the Arduino IDE.

$ roscd rosserial_arduino/libraries
$ cp -r ros_lib <sketchbook>/libraries/ros_lib

&UHDWLQJ�DQ�H[DPSOH�WR�XVH�$UGXLQR
Now, we are going to upload an example program from the IDE to Arduino.
Select the Hello World sample and upload the sketch.

Chapter 4

[�����]

The code is very similar to the following code. In this code, you can see an include
line with the ros.h library. This library is the rosserial library, which we have
installed before. Also, you can see a library with the message to send with a topic;
in this case, the std_msgs/String type.

The following code snippet is present in the example5_1.ino�ÀOH�

#include <ros.h>
#include <std_msgs/String.h>

ros::NodeHandle nh;

std_msgs::String str_msg;
ros::Publisher chatter("chatter", &str_msg);

char hello[19] = "chapter4_tutorials";

void setup()
{
 nh.initNode();
 nh.advertise(chatter);
}

void loop()
{
 str_msg.data = hello;
 chatter.publish(&str_msg);
 nh.spinOnce();
delay(1000);
}

In the setup() function, the name of the topic is set, in this case, it is called chatter.
Now, we need to start a node to hear the port and publish the topics sent by Arduino
on the ROS network. Type the following command in a shell. Remember to run
roscore.

$ rosrun rosserial_python serial_node.py /dev/ttyUSB0

Now, you can see the messages sent by Arduino with the rostopic echo command.

$ rostopic echo chatter

You will see the following data in the shell:

data: chapter4_tutorials

Using Sensors and Actuators with ROS

[�����]

The last example is about the data sent from Arduino to the computer. Now, we are
going to use an example where Arduino will subscribe to a topic and will change
the LED state connected to the pin number 13. The name of the example that we are
going to use is blink��\RX�FDQ�ÀQG�WKLV�LQ�WKH�$UGXLQR�,'(�E\�QDYLJDWLQJ�WR�File |
Examples | ros_lib | Blink.

The following code snippet is present in the example5_2.ino�ÀOH�

#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
void messageCb(const std_msgs::Empty& toggle_msg){
digitalWrite(13, HIGH-digitalRead(13)); // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

void setup()
{
 pinMode(13, OUTPUT);
 nh.initNode();
 nh.subscribe(sub);
}

void loop()
{
 nh.spinOnce();
 delay(1);
}

Remember to launch the node to communicate with the Arduino board.

$ rosrun rosserial_python serial_node.py /dev/ttyUSB0

Now if you want to change the LED status, you can use the rostopic pub command
to publish the new state.

$ rostopic pub toggle_led std_msgs/Empty –once

publishing and latching message for 3.0 seconds

Chapter 4

[�����]

You will notice that the LED has changed its status; if the LED was on, it will now
turn off. To change the status again, you only have to publish the topic once more.

$ rostopic pub toggle_led std_msgs/Empty --once

publishing and latching message for 3.0 seconds

Now you can use all the devices available for Arduino on ROS. This is very useful
because you have access to cheap sensors and actuators to implement your robots.

When we were writing the chapter, we noticed that some Arduino
do not work with rosserial; for instance, Arduino Leonardo. So,
be careful with the selection of the device to use with this package.
We didn't face any problems while working with Arduino Mega,
Arduino Duemilanove, and Arduino Nano.

8VLQJ�WKH�,08�±�;VHQV�07L
An inertial measurement unit, or IMU, is an electronic device that measures

and reports on a craft's velocity, orientation, and gravitational forces, using a

combination of accelerometers and gyroscopes, sometimes also magnetometers.

IMUs are typically used to maneuver aircraft, including unmanned aerial vehicles

(UAVs), among many others, and spacecraft, including satellites and landers.

—Source: Wikipedia

In the following image, you can see the Xsens MTi, which is the sensor used in
this section.

In this section, we will learn how to use it in ROS, the topics published by the sensor,
and a small example with code to take data from the sensor and publish a new topic.

Using Sensors and Actuators with ROS

[�����]

You can use a lot of IMU devices with ROS. In this section, we will use the
Xsens IMU, which is necessary to install the right drivers. But if you want to use
MicroStrain 3DM-GX2 or Wiimote with Wii Motion Plus, you need to download
the following drivers:

�� MicroStrain 3DM-GX2 IMU is available at http://www.ros.org/wiki/
microstrain_3dmgx2_imu

�� Wiimote with Wii Motion Plus is available at http://www.ros.org/wiki/
wiimote

To use our device, we are going to use the lse_xsens_mti driver. You can install
it using:

$ svn co http://isr-uc-ros-pkg.googlecode.com/svn/stacks/lse_imu_drivers/
trunk/

We also need to install two packages because the driver depends on them.

$ svn co http://isr-uc-ros-pkg.googlecode.com/svn/stacks/serial_
communication/trunk/cereal_port/

$ sudo apt-get install ros-fuerte-gps_umd

Recall installing them inside ROS_PACKAGE_PATH. Once installed, refresh the stacks
and package installation.

$ rosstack profile

$ rospack profile

Now, we are going to start the IMU and see how it works. In a shell, start roscore
and in another shell run the following command:

$ rosrun lse_imu_drivers mti_node

Make sure that the device is connected to the /dev/ttyUSB0 port; if not, you must
change the port by changing the code or using the Parameter Server as we have seen
in other chapters.

+RZ�GRHV�;VHQV�VHQG�GDWD�LQ�526"
,I�HYHU\WKLQJ�LV�ÀQH��\RX can see the topic list using the rostopic command.

$ rostopic list

Chapter 4

[�����]

The node will publish three topics. We will work with /imu/data in this section.
First of all, we are going to see the type and data sent by this topic. To see the type
DQG�WKH�ÀHOGV��XVH�WKH�IROORZLQJ�FRPPDQG�OLQHV�

$ rostopic type /imu/data

$ rostopic type /imu/data | rosmsg show

7KH�ÀHOGV�DUH�XVHG�WR�LQGLFDWH�WKH�RULHQWDWLRQ��DFFHOHUDWLRQ��DQG�YHORFLW\��,Q�RXU�
example, we will use the orientation�ÀHOG��&KHFN�D�PHVVDJH�WR�VHH�D�UHDO�H[DPSOH�
of the data sent. You can do it with the following command:

$ rostopic echo /imu/data

header:
seq: 288
stamp:
 secs: 1330631562
 nsecs: 789304161
frame_id: xsens_mti_imu
orientation:
x: 0.00401890464127
y: -0.00402884092182
z: 0.679586052895
w: 0.73357373476
...

,I�\RX�REVHUYH�WKH�RULHQWDWLRQ�ÀHOG��\RX�ZLOO�VHH�IRXU�YDULDEOHV�LQVWHDG�RI�WKUHH��
as you would probably expect. This is because in ROS, the spatial orientation is
UHSUHVHQWHG�XVLQJ�TXDWHUQLRQV��<RX�FDQ�ÀQG�D�ORW�RI�OLWHUDWXUH�RQ�WKLV�FRQFLVH�DQG�
nonambiguous orientation representation on the Internet.

&UHDWLQJ�DQ�H[DPSOH�WR�XVH�;VHQV
Now that we know the type of data sent and what data we are going to use,
let's start with the example.

In this example, we are going to use the IMU to move the turtlesim. To do this, we
need to take the data from the quaternion and convert it to Euler angles (roll, pitch,
and yaw) and also take the rotation values around the x and y axes (roll and pitch)
to move the turtle with a linear and angular movement.

Using Sensors and Actuators with ROS

[�����]

7KH�IROORZLQJ�FRGH�VQLSSHW�LV�VLPLODU�WR�WKH�MR\VWLFN�FRGH��&UHDWH�D�QHZ�ÀOH��example6.
cpp, in your chapter4_tutorials/src/ directory and type in the following code:

#include<ros/ros.h>
#include<turtlesim/Velocity.h>
#include<sensor_msgs/Imu.h>
#include<iostream>
#include<tf/LinearMath/Matrix3x3.h>
#include<tf/LinearMath/Quaternion.h>

using namespace std;

class TeleopImu{
public:
 TeleopImu();
private:
 void callBack(const sensor_msgs::Imu::ConstPtr& imu);
 ros::NodeHandle n;
 ros::Publisher pub;
 ros::Subscriber sub;
};

TeleopImu::TeleopImu()
{
 pub = n.advertise<turtlesim::Velocity>("turtle1/command_velocity",1);
 sub = n.subscribe<sensor_msgs::Imu>("imu/data", 10,
 &TeleopImu::callBack, this);
}

void TeleopImu::callBack(const sensor_msgs::Imu::ConstPtr& imu)
{
 turtlesim::Velocity vel;
 tf::Quaternion bq(imu->orientation.x,imu->orientation.y,imu-
 >orientation.z,imu->orientation.w);
 double roll,pitch,yaw;
 tf::Matrix3x3(bq).getRPY(roll,pitch,yaw);
 vel.angular = roll;
 vel.linear = pitch;
 pub.publish(vel);

}

int main(int argc, char** argv)
{
ros::init(argc, argv, "teleopImu");
 TeleopImu teleop_turtle;

ros::spin();
}

Chapter 4

[�����]

The node will subscribe to the topic imu/data and will publish a new topic with the
movement commands for turtlesim.

TeleopImu::TeleopImu()
{
pub = n.advertise<turtlesim::Velocity>("turtle1/command_velocity",1);
sub = n.subscribe<sensor_msgs::Imu>("imu/data", 10,
&TeleopImu::callBack, this);
}

The important part of the code is the callBack function. Inside this callback method,
the IMU topic is received and processed to create a new turtlesim/velocity topic.
As you might remember, this type of message will control the velocity of turtlesim.

void TeleopImu::callBack(const sensor_msgs::Imu::ConstPtr& imu)
{
...
tf::Matrix3x3(bq).getRPY(roll,pitch,yaw);
 vel.angular = roll;
 vel.linear = pitch;
pub.publish(vel);
}

The conversion of quaternions to Euler angles is done by the means of the Matrix3x3
class. Then, we use the accessor method, getRPY, provided by this class. Using this,
ZH�ZLOO�JHW�WKH�UROO��SLWFK��DQG�\DZ�IURP�WKH�PDWUL[�DERXW�WKH�À[HG�x, y, and z axes.

After that, we only need to assign the value of pitch and roll to the linear and angular
velocity variables, respectively.

Now, if you run everything at the same time, you will see the turtle moving
according to the IMU movements as if it were a joystick.

8VLQJ�D�ORZ�FRVW�,08�±����GHJUHHV�RI�
IUHHGRP
In this section, we will learn to use a low-cost sensor with 10 degrees of freedom
(DoF). This sensor, which is similar to Xsens MTi, has an accelerometer (x3), a
magnetometer (x3), a barometer (x1), and a gyroscope (x3). It is controlled with
a simple I2C interface, and in this example it will be connected to Arduino Nano
(http://arduino.cc/en/Main/ArduinoBoardNano).

Using Sensors and Actuators with ROS

[�����]

This sensor is also used for similar uses. Xsens costs approximately $2,000, which
is very expensive for normal users. The sensor explained in this section has an
approximate cost of $20. The low price of this sensor permits its usage in a lot
of projects.

You can see this sensor in the following image. It is thin and has few components.

This board has the following sensors:

�� ADXL345: This is a three-axis accelerometer with a high resolution (13-bit)
measurement of up to ±16 g. This sensor is widely used in mobile device
applications. It measures the static acceleration of gravity in tilt-sensing
applications as well as dynamic acceleration resulting from motion or shock.

�� HMC5883L: This sensor is designed for�ORZ�ÀHOG�PDJQHWLF�VHQVLQJ�with a
digital interface for devices such as low-cost compasses and magnetometers.

�� BMP085: This is a high-precision barometric pressure sensor used in
advanced mobile applications. It offers superior performance with an
absolute accuracy up to to 0.03 hPa and has a very low power consumption
of 3 µA.

�� L3G4200D: This is a three-axis gyroscope with a very high resolution (16-bit)
measurement up to 2,000 degrees per second (dps).This gyroscope measures
how much the device is rotating around all three axes.

As we have said before, the board is controlled using the I2C protocol, and we will
use Arduino to control it. In the following image, you can see the way to connect
both the boards:

Chapter 4

[�����]

The only thing necessary is to connect the four wires to make it work. Connect the
GND and Vcc from the sensor to GND and 5 V in Arduino.

The Serial Data Line (SDL) must be connected to the analog pin 4 and the Serial
Clock (SCK) must be connected to the analog pin 5. If you connect these pins
wrongly, Arduino will not be able to communicate with the sensor.

'RZQORDGLQJ�WKH�OLEUDU\�IRU�WKH�DFFHOHURPHWHU
Before using the sensor, it is necessary to download the right library for Arduino.

2Q�WKH�,QWHUQHW��\RX�FDQ�ÀQG�D�ORW�RI�OLEUDULHV�ZLWK�GLIIHUHQW�IXQFWLRQDOLWLHV��EXW�ZH�
will use the library that can be downloaded from https://github.com/jenschr/
Arduino-libraries.

Once you have downloaded the library, uncompress it inside your sketchbook
folder to load it.

<RX�FDQ�ÀQG�WKH�OLEUDULHV�IRU�WKH�RWKHU�VHQVRUV�RQ�WKH�,QWHUQHW��%XW�WR�PDNH�\RXU�OLIH�
HDV\��\RX�FDQ�ÀQG�DOO�WKH�QHFHVVDU\�OLEUDULHV�WR�XVH�WKH���'2)�VHQVRU�LQ�chapter4_
tutorials/libraries��,QVLGH�HDFK�OLEUDU\��\RX�FDQ�DOVR�ÀQG�H[DPSOHV�DERXW�KRZ�
to use the sensor.

3URJUDPPLQJ�$UGXLQR�1DQR�DQG�WKH���'2)�
sensor
In this section, we are going to make a program in Arduino to take data from the
accelerometers and publish it in ROS.

Using Sensors and Actuators with ROS

[�����]

Open the Arduino IDE and FUHDWH�D�QHZ�ÀOH�ZLWK�WKH�QDPH�example7.ino and type
in the following code:

#include <ros.h>
#include <std_msgs/Float32.h>

#include <Wire.h>
#include <ADXL345.h>

ADXL345 Accel;

ros::NodeHandle nh;
std_msgs::Float32 velLinear_x;
std_msgs::Float32 velAngular_z;

ros::Publisher velLinear_x_pub("velLinear_x", &velLinear_x);
ros::Publisher velAngular_z_pub("velAngular_z", &velAngular_z);

void setup(){

 nh.initNode();
 nh.advertise(velLinear_x_pub);
 nh.advertise(velAngular_z_pub);

 Wire.begin();
 delay(100);
 Accel.set_bw(ADXL345_BW_12);

}

void loop(){

 double acc_data[3];
 Accel.get_Gxyz(acc_data);

 velLinear_x.data = acc_data[0];
 velAngular_z.data = acc_data[1];

 velLinear_x_pub.publish(&velLinear_x);
 velAngular_z_pub.publish(&velAngular_z);

 nh.spinOnce();
 delay(10);
}

Chapter 4

[�����]

Let's break the code and see the steps to take the data and publish it.

We are going to use two Float 32 variables to publish the data, and it is necessary
to include the following line in the program:

#include <std_msgs/Float32.h>

To be able to communicate with the sensor using the I2C Bus, we need to use the
Wire.h library. This library is standard in Arduino.

#include <Wire.h>

To use the library downloaded before, we add the following include header:

#include <ADXL345.h>

We will use the Accel object to interact with the sensor.

ADXL345 Accel;

The data read from the sensor will be stored in the following variables: velLinear_x
is used for linear velocity and the data is read from the accelerometer for the x axis,
while velAngular_z is used for angular velocity and the data is read from the
accelerometer for the z axis.

std_msgs::Float32 velLinear_x;
std_msgs::Float32 velAngular_z;

This program will publish two different topics: one for linear velocity and the other
for angular velocity.

ros::Publisher velLinear_x_pub("velLinear_x", &velLinear_x);
ros::Publisher velAngular_z_pub("velAngular_z", &velAngular_z);

This is where the topic is created. Once you have executed these lines, you will see
two topics in ROS with the names velAngular_z and velLinear_x.

nh.advertise(velLinear_x_pub);
nh.advertise(velAngular_z_pub);

The sensor and its bandwidth are initialized in this line as follows:

 Accel.set_bw(ADXL345_BW_12);

The data returned by get_Gxyz is stored in a three-component vector.

double acc_data[3];
 Accel.get_Gxyz(acc_data);

Using Sensors and Actuators with ROS

[�����]

$QG�ÀQDOO\��WKH�GDWD�LV�SXEOLVKHG�

velLinear_x_pub.publish(&velLinear_x);
velAngular_z_pub.publish(&velAngular_z);

&UHDWLQJ�D�526�QRGH�WR�XVH�GDWD�IURP�WKH�
��'2)�VHQVRU
In this section, we are going to create a new program to use data from the sensor
and generate moving commands to move the turtle in turtlesim. The goal is to use
the 10DOF sensor board as input for turtlesim and moving the turtle using the
accelerometers.

6R��FUHDWH�D�QHZ�ÀOH�LQVLGH�WKH�GLUHFWRU\�chapter4_tutorials/src with the name
example8.cpp, and type in the following code:

#include<ros/ros.h>
#include<turtlesim/Velocity.h>
#include<std_msgs/Float32.h>

class TeleopImu{
 public:
 TeleopImu();
 private:
 void velLinearCallBack(const std_msgs::Float32::ConstPtr& vx);
 void velAngularCallBack(const std_msgs::Float32::ConstPtr& wz);
 ros::NodeHandle n;
 ros::Publisher pub;
 ros::Subscriber velAngular_z_sub;
 ros::Subscriber velLinear_x_sub;
 turtlesim::Velocity vel;
};

TeleopImu::TeleopImu()
{
 pub = n.advertise<turtlesim::Velocity>("turtle1/command_
velocity",1);

 velLinear_x_sub = n.subscribe<std_msgs::Float32>("/velLinear_x", 1,
&TeleopImu::velLinearCallBack, this);
 velAngular_z_sub = n.subscribe<std_msgs::Float32>("/velAngular_z",
1, &TeleopImu::velAngularCallBack, this);
}

Chapter 4

[�����]

void TeleopImu::velAngularCallBack(const std_msgs::Float32::ConstPtr&
wz){
 vel.linear = -1 * wz->data;
 pub.publish(vel);
}

void TeleopImu::velLinearCallBack(const std_msgs::Float32::ConstPtr&
vx){
 vel.angular = vx->data;
 pub.publish(vel);
}

int main(int argc, char** argv)
{
 ros::init(argc, argv, "example8");
 TeleopImu teleop_turtle;
 ros::spin();
}

This code is similar to example6.cpp used with the Xsens IMU; the only difference
being the topic to subscribe and the type of data. In this case, we will subscribe to
two topics created by Arduino Nano. These topics will be used to control turtlesim.

It is necessary to subscribe to the topics, /velLinear_x and velAngular_z, and we
will do this as shown in the following lines:

velLinear_x_sub = n.subscribe<std_msgs::Float32>("/velLinear_x", 1,
&TeleopImu::velLinearCallBack, this);
velAngular_z_sub = n.subscribe<std_msgs::Float32>("/velAngular_z", 1,
&TeleopImu::velAngularCallBack, this);

Every time the node receives a message, it takes the data from the message and
creates a new turtlesim/Velocity message and publishes it.

void TeleopImu::velAngularCallBack(const std_msgs::Float32::ConstPtr&
wz){
 vel.linear = -1 * wz->data;
 pub.publish(vel);
}

void TeleopImu::velLinearCallBack(const std_msgs::Float32::ConstPtr&
vx){
vel.angular = vx->data;
 pub.publish(vel);
}

Using Sensors and Actuators with ROS

[140]

To run the example, remember to compile the code and follow the steps outlined:

1. Start a new roscore command in a shell. Connect Arduino to the computer
and launch the following command:
$ rosrun rosserial_python serial_node.py

2. Now, start turtlesim by typing the following command:
$ rosrun turtlesim turtlesim_node

$QG�ÀQDOO\��W\SH�WKH�IROORZLQJ�FRPPDQG�WR�VWDUW�WKH�QRGH�

$ rosrun chapter4_tutorials example8

If everything is OK, you should see the TurtleSim interface with the turtle moving.
If you move the sensor, the turtle will move in a straight line or change its direction.

6XPPDU\
The use of sensors and actuators in robotics is very important since it is the only
way to interact with the real world. In this chapter, you have learned how to use,
FRQÀJXUH��DQG�LQYHVWLJDWH�IXUWKHU�RQ�KRZ�VRPH�FRPPRQ�VHQVRUV�DQG�DFWXDWRUV�
work, which are used by a number of people in the world of robotics. We are sure
WKDW�LI�\RX�ZLVK�WR�XVH�DQRWKHU�W\SH�RI�VHQVRU��\RX�ZLOO�ÀQG�LQIRUPDWLRQ�RQ�WKH�
Internet about how to use it, without problems.

In our humble opinion, Arduino is a very interesting device because with it, you can
add more devices or cheap sensors to your computer and use them within the ROS
framework easily and transparently. Arduino has a large community, and you can
ÀQG�LQIRUPDWLRQ�RQ�PDQ\�VHQVRUV��ZKLFK�FRYHU�WKH�VSHFWUXP�RI�DSSOLFDWLRQV�\RX�
can imagine.

Finally, we must mention that the range laser will be a very useful sensor in the
upcoming chapters. The reason is that it is a mandatory device to implement the
navigation stack, which relies on the range readings it provides at a high frequency
with good precision. In the next chapter, you will see how to model your robot,
visualize it in rviz, and use it by loading it on the Gazebo simulator, which is also
integrated in ROS.

�'�0RGHOLQJ�DQG�6LPXODWLRQ
Programming directly on a real robot gives us good feedback and it is more impressive
than simulations, but not everybody has possible access to real robots. For this reason,
we have programs that simulate the physical world.

In this chapter we are going to learn how to:

�� Create a 3D model of our robot
�� Provide movements, physical limits, inertia, and other physical aspects

to our robot
�� Add simulated sensors to our 3D model
�� Use the model on the simulator

$��'�PRGHO�RI�RXU�URERW�LQ�526
The way ROS uses the 3D model of a robot or its parts, to simulate them or to simply
KHOS�WKH�GHYHORSHUV�LQ�WKHLU�GDLO\�ZRUN��LV�E\�PHDQV�RI�WKH�85')�ÀOHV�

8QLÀHG�5RERW�'HVFULSWLRQ�)RUPDW (URDF) is an XML format that describes a robot,
its parts, its joints, dimensions, and so on. Every time you see a 3D robot on ROS,
for example, the PR2 (Willow Garage) or the Robonaut (NASA���D�85')�ÀOH�LV�
DVVRFLDWHG�ZLWK�LW��,Q�WKH�QH[W�VHFWLRQV�ZH�ZLOO�OHDUQ�KRZ�WR�FUHDWH�WKLV�ÀOH�DQG�WKH�
IRUPDW�WR�GHÀQH�GLIIHUHQW�YDOXHV�

3D Modeling and Simulation

[�����]

&UHDWLQJ�RXU�¿UVW�85')�¿OH
The robot, which we are going to build in the following sections, is a mobile robot
with four wheels and an arm with a gripper.

7R�VWDUW�ZLWK��ZH�FUHDWH�WKH�EDVH�RI�WKH�URERWV�ZLWK�IRXU�ZKHHOV��&UHDWH�D�QHZ�ÀOH�
in the chapter5_tutorials/urdf folder with the name robot1.urdf and put in
the following code; this URDF code is based on XML, and the indentation is not
mandatory but advisable, so use an editor that supports it or an adequate plugin
RU�FRQÀJXUDWLRQ��IRU�H[DPSOH��DQ�DSSURSULDWH�.vimrc�ÀOH�LQ�9LP��

<?xml version="1.0"?>
 <robot name="Robot1">
 <link name="base_link">
 <visual>
 <geometry>
 <box size="0.2 .3 .1"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0.05"/>
 <material name="white">
 <color rgba="1 1 1 1"/>
 </material>
 </visual>
 </link>

 <link name="wheel_1">
 <visual>
 <geometry>
 <cylinder length="0.05" radius="0.05"/>
 </geometry>
 <origin rpy="0 1.5 0" xyz="0.1 0.1 0"/>
 <material name="black">
 <color rgba="0 0 0 1"/>
 </material>
 </visual>
 </link>

 <link name="wheel_2">
 <visual>
 <geometry>
 <cylinder length="0.05" radius="0.05"/>
 </geometry>
 <origin rpy="0 1.5 0" xyz="-0.1 0.1 0"/>
 <material name="black"/>
 </visual>
 </link>

Chapter 5

[�����]

 <link name="wheel_3">
 <visual>
 <geometry>
 <cylinder length="0.05" radius="0.05"/>
 </geometry>
 <origin rpy="0 1.5 0" xyz="0.1 -0.1 0"/>
 <material name="black"/>
 </visual>
 </link>

 <link name="wheel_4">
 <visual>
 <geometry>
 <cylinder length="0.05" radius="0.05"/>
 </geometry>
 <origin rpy="0 1.5 0" xyz="-0.1 -0.1 0"/>
 <material name="black"/>
 </visual>
 </link>

 <joint name="base_to_wheel1" type="fixed">
 <parent link="base_link"/>
 <child link="wheel_1"/>
 <origin xyz="0 0 0"/>
 </joint>

 <joint name="base_to_wheel2" type="fixed">
 <parent link="base_link"/>
 <child link="wheel_2"/>
 <origin xyz="0 0 0"/>
 </joint>

 <joint name="base_to_wheel3" type="fixed">
 <parent link="base_link"/>
 <child link="wheel_3"/>
 <origin xyz="0 0 0"/>
 </joint>

 <joint name="base_to_wheel4" type="fixed">
 <parent link="base_link"/>
 <child link="wheel_4"/>
 <origin xyz="0 0 0"/>
 </joint>
 </robot>

3D Modeling and Simulation

[144]

([SODLQLQJ�WKH�¿OH�IRUPDW
As you see in the code, there�DUH�WZR�SULQFLSDO�ÀHOGV�WKDW�GHVFULEH�WKH�JHRPHWU\�RI�
a robot: links and joints.

7KH�ÀUVW�OLQN�KDV�WKH�QDPH�base_link��WKLV�QDPH�PXVW�EH�XQLTXH�WR�WKH�ÀOH�

 <link name="base_link">
 <visual>
 <geometry>
 <box size="0.2 .3 .1"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0.05"/>
 <material name="white">
 <color rgba="1 1 1 1"/>
 </material>
 </visual>
 </link>

,Q�RUGHU�WR�GHÀQH�ZKDW�ZH�ZLOO�VHH�RQ�WKH�VLPXODWRU��ZH�XVH�WKH�YLVXDO�ÀHOG�LQ�WKH�
SUHFHGLQJ�FRGH��,QVLGH�WKH�FRGH�\RX�FDQ�GHÀQH�WKH�JHRPHWU\��F\OLQGHU��ER[��VSKHUH��
or mesh), the material (color or texture), and the origin. We then have the code for
the joint, shown as follows:

<joint name="base_to_wheel1" type="fixed">
 <parent link="base_link"/>
 <child link="wheel_1"/>
 <origin xyz="0 0 0"/>
</joint>

In the joint�ÀHOG��ZH�GHÀQH�WKH�QDPH��ZKLFK�PXVW�EH�XQLTXH�DV�ZHOO��$OVR��
ZH�GHÀQH�WKH�W\SH�RI�MRLQW��fixed, revolute, continuous, floating, or planar),
the parent, and the child. In our case, wheel_1 is a child of base_link��,W�LV�À[HG��
but as it is a wheel we can set it to revolute, for example.

7R�FKHFN�ZKHWKHU�WKH�V\QWD[�LV�ÀQH�RU�ZKHWKHU�ZH�KDYH�HUURUV��ZH�FDQ�XVH�WKH�
check_urdf command tool:

$ rosrun urdf_parser check_urdf robot1.urdf
robot name is: Robot1
---------- Successfully Parsed XML ---------------
root Link: base_link has 4 child(ren)
 child(1): wheel_1
 child(2): wheel_2
 child(3): wheel_3
 child(4): wheel_4

Chapter 5

[�����]

This tool will be deprecated after ROS Fuerte, so if you are
using a newer ROS distribution than the one used in this book
(Fuerte), such as Groovy, you should use the urdfdom package,
which will contain the check_urdf node/tool.

If you want to see it graphically, you can use the urdf_to_graphiz command tool:

$ rosrun urdf_parser urdf_to_graphiz "`rospack find chapter5_tutorials`/
urdf/robot1.urdf"

The following is what you will receive as output:

:DWFKLQJ�WKH��'�PRGHO�RQ�UYL]
Now that we have the model of our robot, we can use it on rviz to watch it in 3D
and see the movements of the joints.

We will create the display.launch�ÀOH�LQ�WKH�chapter5_tutorials/launch folder,
and put the following code in it:

<launch>
 <arg name="model" />
 <arg name="gui" default="False" />
 <param name="robot_description" textfile="$(arg model)" />
 <param name="use_gui" value="$(arg gui)"/>
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" ></node>
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />
 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find urdf_
tutorial)/urdf.vcg" />
</launch>

3D Modeling and Simulation

[�����]

We will launch it with the following command:

$ roslaunch chapter5_tutorials display.launch model:="`rospack find
chapter5_tutorials`/urdf/robot1.urdf"

,I�HYHU\WKLQJ�LV�ÀQH��\RX�ZLOO�VHH�WKH�IROORZLQJ�ZLQGRZ�ZLWK�WKH��'�PRGHO�RQ�LW�

/HW
V�ÀQLVK�WKH�GHVLJQ�E\�DGGLQJ�VRPH�SDUWV��D�EDVH�DUP��DQ�DUWLFXODWHG�DUP��
DQG�D�JULSSHU��7U\�WR�ÀQLVK�WKH�GHVLJQ�\RXUVHOI��\RX�FDQ�ÀQG�WKH�ÀQDO�PRGHO�LQ�
the chapter5_tutorials/urdf/robot1.urdf�ÀOH��<RX�FDQ�VHH�WKH�ÀQDO�GHVLJQ�
in the following screenshot as well:

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 5

[147]

/RDGLQJ�PHVKHV�WR�RXU�PRGHOV
Sometimes we want to give more realistic elements to our model or make a more
elaborate design, rather than using basic geometric objects/blocks. It is possible
to load meshes generated by us or to use meshes of other models. For our model,
we used the PR2's gripper. In the following code, you can see an example of how
to use it:

<link name="left_gripper">
<visual>
 <origin rpy="0 0 0" xyz="0 0 0"/>
 <geometry>
 <mesh filename="package://pr2_description/meshes/gripper_
v0/l_finger.dae"/>
 </geometry>
 </visual>
</link>

3D Modeling and Simulation

[�����]

This looks like the sample link that we used before, but in the geometry section we
added the mesh we are going to use. You can see the result in the following screenshot:

0DNLQJ�RXU�URERW�PRGHO�PRYDEOH
To convert the model into a robot that can actually move, the only thing you have
WR�GR�LV�WDNH�FDUH�RI�WKH�W\SH�RI�WKH�MRLQWV�LW�XVHV��,I�\RX�FKHFN�WKH�85')�PRGHO�ÀOH��
you will see the different types of joints used in this model.

The most used type of joint is the revolute joint. For example, the one used on
arm_1_to_arm_base, is shown in the following code:

<joint name="arm_1_to_arm_base" type="revolute">
 <parent link="arm_base"/>
 <child link="arm_1"/>
 <axis xyz="1 0 0"/>
 <origin xyz="0 0 0.15"/>
<limit effort ="1000.0" lower="-1.0" upper="1.0" velocity="0.5"/>
</joint>

This means that they rotate in the same way that the continuous joints do, but
WKH\�KDYH�VWULFW�OLPLWV��7KH�OLPLWV�DUH�À[HG�XVLQJ�WKH�<limit effort ="1000.0"
lower="-1.0" upper="1.0" velocity="0.5"/> line, and you can select the
axis to move with axis xyz="1 0 0".

Chapter 5

[�����]

$�JRRG�ZD\�RI�WHVWLQJ�ZKHWKHU�RU�QRW�WKH�D[LV�DQG�OLPLWV�RI�WKH�MRLQWV�DUH�ÀQH�LV�E\�
running rviz with the Join_State_Publisher GUI:

$ roslaunch chapter5_tutorials display.launch model:="`rospack find
chapter5_tutorials`/urdf/robot1.urdf" gui:=true

You will see the rviz interface with another window with some sliders, each one
controlling one joint:

Physical and collision properties
If you want to simulate the robot on Gazebo or any other simulation software, it is
necessary to add physical and collision properties. This means that we need to set
the dimension of the geometry to calculate the possible collisions, for example, the
weight that will give us the inertia, and so on.

,W�LV�QHFHVVDU\�WKDW�DOO�OLQNV�RQ�WKH�PRGHO�ÀOH�KDYH�WKHVH�SDUDPHWHUV��LI�QRW��WKH�URERW�
could not be simulated.

)RU�WKH�PHVK�PRGHOV��LW�LV�HDVLHU�WR�FDOFXODWH�FROOLVLRQV�E\�XVLQJ�VLPSOLÀHG�JHRPHWU\�
than the actual mesh. Calculating the collision between two meshes is more
computationally complex than it is to calculate a simple geometry.

3D Modeling and Simulation

[�����]

In the following code, you will see the new parameters added on the link with the
name wheel_1:

<link name="wheel_1">
 ...
 <collision>
 <geometry>
 <cylinder length="0.05" radius="0.05"/>
 </geometry>
 </collision>
 <inertial>
 <mass value="10"/>
 <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0"
izz="1.0"/>
 </inertial>
</link>

It is the same for the other links. Remember to put collision and inertial
elements in all the links, because if you do not, Gazebo will not take the model.

<RX�FDQ�ÀQG�D�FRPSOHWH�ÀOH�ZLWK�DOO�WKH�SDUDPHWHUV�DW�chapter5_tutorials/urdf/
robot1_physics.urdf.

;DFUR�±�D�EHWWHU�ZD\�WR�ZULWH�RXU�URERW�
PRGHOV
Notice the size of the robot1_physics.urdf�ÀOH��,W�KDV�����OLQHV�RI�FRGH�WR�GHÀQH�RXU�
URERW��,PDJLQH�LI�\RX�VWDUW�WR�DGG�FDPHUDV��OHJV��DQG�RWKHU�JHRPHWULHV��WKH�ÀOH�ZLOO�VWDUW�
to increase and the maintenance of the code will start to become more complicated.

Xacro KHOSV�WR�UHGXFH�WKH�RYHUDOO�VL]H�RI�WKH�85')�ÀOH�DQG�PDNHV�LW�HDVLHU�WR�UHDG�DQG�
maintain. It also allows us to create modules and reutilize them to create repeated
structures such as several arms or legs.

To start using xacro��ZH�QHHG�WR�VSHFLI\�D�QDPHVSDFH�VR�WKDW�WKH�ÀOH�LV�SDUVHG�
SURSHUO\��)RU�H[DPSOH��WKHVH�DUH�WKH�ÀUVW�WZR�OLQHV�RI�D�YDOLG�xacro�ÀOH�

 <?xml version="1.0"?>
 <robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="robot1_
xacro">

,Q�LW��ZH�GHÀQH�WKH�QDPH�RI�WKH�PRGHO��ZKLFK�LQ�WKLV�FDVH�LV�robot1_xacro.
5HPHPEHU�WKDW�WKH�ÀOH�H[WHQVLRQ�ZLOO�EH�.xacro instead of .urdf.

Chapter 5

[�����]

8VLQJ�FRQVWDQWV
We can use xacro to declare constant values; hence we can avoid putting the same
value in a lot of lines. Without the use of xacro, if we had to change a value, it would
be almost impossible to maintain the changes.

For example, the four wheels have the same values for length and radius. If we want
to change the value, we need to change it in each line; but if we use the next lines,
we can change all the values easily:

<xacro:property name="length_wheel" value="0.05" />
<xacro:property name="radius_wheel" value="0.05" />

And now, to use these variables you only have to change the old value with
${name_of_variable}:

<cylinder length="${length_wheel}" radius="${radius_wheel}"/>

8VLQJ�PDWK
You can build up arbitrarily complex expressions in the ${} construct using the four
basic operations (+, -, *, /), the unary minus, and parenthesis. Exponentiation and
modulus are, however, not supported:

<cylinder radius="${wheeldiam/2}" length=".1"/>
<origin xyz="${reflect*(width+.02)} 0 .25" />

By using mathematics, we can resize the model by only changing a value. To do this,
we need a parameterized design.

8VLQJ�PDFURV
Macros are the most useful component of the xacro�SDFNDJH��7R�UHGXFH�WKH�ÀOH�VL]H�
even more, we are going to use the following macro for inertial:

<xacro:macro name="default_inertial" params="mass">
 <inertial>
 <mass value="${mass}" />
 <inertia ixx="1.0" ixy="0.0" ixz="0.0"
 iyy="1.0" iyz="0.0"
 izz="1.0" />
 </inertial>
 </xacro:macro>
<xacro:default_inertial mass="100"/>

3D Modeling and Simulation

[�����]

If we compare the robot1.urdf�ÀOH�ZLWK�robot1.xacro, we will have eliminated
30 duplicate lines without effort. It is possible to reduce it further using more macros
and variables.

To use the xacro�ÀOH�ZLWK�rviz and Gazebo, you need to convert it to .urdf. To do
this, we execute the following command inside the chapter5_tutorials/urdf folder:

$ rosrun xacro xacro.py robot1.xacro > robot1_processed.urdf

You can also execute the following command everywhere and it should give the same
result as the other command:

$ rosrun xacro xacro.py "`rospack find chapter5_tutorials`/urdf/robot1.
xacro" > "`rospack find chapter5_tutorials`/urdf/robot1_processed.urdf"

So, in order to make the commands easier to write, we recommend you to continue
working on the same folder.

Moving the robot with code
Ok, we have the 3D model of our robot and we can see it on rviz, but how can
ZH�PRYH�WKH�URERW�XVLQJ�D�QRGH"

&UHDWH�D�QHZ�ÀOH�LQ�WKH�chapter5_tutorials/src folder with the name
state_publisher.cpp and copy the following code:

#include <string>
#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>

int main(int argc, char** argv) {
 ros::init(argc, argv, "state_publisher");
 ros::NodeHandle n;
 ros::Publisher joint_pub = n.advertise<sensor_
msgs::JointState>("joint_states", 1);
 tf::TransformBroadcaster broadcaster;
 ros::Rate loop_rate(30);

 const double degree = M_PI/180;

 // robot state
 double inc= 0.005, base_arm_inc= 0.005, arm1_armbase_inc= 0.005,
arm2_arm1_inc= 0.005, gripper_inc= 0.005, tip_inc= 0.005;

Chapter 5

[�����]

 double angle= 0 ,base_arm = 0, arm1_armbase = 0, arm2_arm1 = 0,
gripper = 0, tip = 0;
 // message declarations
 geometry_msgs::TransformStamped odom_trans;
 sensor_msgs::JointState joint_state;
 odom_trans.header.frame_id = "odom";
 odom_trans.child_frame_id = "base_link";

 while (ros::ok()) {
 //update joint_state
 joint_state.header.stamp = ros::Time::now();
 joint_state.name.resize(7);
 joint_state.position.resize(7);
 joint_state.name[0] ="base_to_arm_base";
 joint_state.position[0] = base_arm;
 joint_state.name[1] ="arm_1_to_arm_base";
 joint_state.position[1] = arm1_armbase;
 joint_state.name[2] ="arm_2_to_arm_1";
 joint_state.position[2] = arm2_arm1;
 joint_state.name[3] ="left_gripper_joint";
 joint_state.position[3] = gripper;
 joint_state.name[4] ="left_tip_joint";
 joint_state.position[4] = tip;
 joint_state.name[5] ="right_gripper_joint";
 joint_state.position[5] = gripper;
 joint_state.name[6] ="right_tip_joint";
 joint_state.position[6] = tip;

 // update transform
 // (moving in a circle with radius 1)
 odom_trans.header.stamp = ros::Time::now();
 odom_trans.transform.translation.x = cos(angle);
 odom_trans.transform.translation.y = sin(angle);
 odom_trans.transform.translation.z = 0.0;
 odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(
angle);

 //send the joint state and transform
 joint_pub.publish(joint_state);
 broadcaster.sendTransform(odom_trans);

 // Create new robot state
 arm2_arm1 += arm2_arm1_inc;

3D Modeling and Simulation

[�����]

 if (arm2_arm1<-1.5 || arm2_arm1>1.5) arm2_arm1_inc *= -1;
 arm1_armbase += arm1_armbase_inc;
if (arm1_armbase>1.2 || arm1_armbase<-1.0) arm1_armbase_inc *= -1;
 base_arm += base_arm_inc;
 if (base_arm>1. || base_arm<-1.0) base_arm_inc *= -1;
 gripper += gripper_inc;
 if (gripper<0 || gripper>1) gripper_inc *= -1;
 angle += degree/4;

 // This will adjust as needed per iteration
 loop_rate.sleep();
 }
 return 0;
}

We are going to see what we can do to the code to get these movements.

First, we create a new frame called odom and all the transforms will be referred to this
new frame. As you will remember, all the links are children of base_link and all the
frames will be linked to the odom frame:

...
geometry_msgs::TransformStamped odom_trans;
odom_trans.header.frame_id = "odom";
odom_trans.child_frame_id = "base_link";
...

Now, we are going to create a new topic to control all the joints of the model. Joint_
state is a message that holds data to describe the state of a set of torque-controlled
joints. As our model has seven joints, we create a message with seven elements:

sensor_msgs::JointState joint_state;

joint_state.header.stamp = ros::Time::now();
joint_state.name.resize(7);
joint_state.position.resize(7);
joint_state.name[0] ="base_to_arm_base";
joint_state.position[0] = base_arm;
...

Chapter 5

[�����]

In our example, the robot will move in circles. We calculate the coordinates and the
movement on the next portion of our code:

odom_trans.header.stamp = ros::Time::now();
odom_trans.transform.translation.x = cos(angle)*1;
odom_trans.transform.translation.y = sin(angle)*1;
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(angle);

Finally, we publish the new state of our robot:

joint_pub.publish(joint_state);
broadcaster.sendTransform(odom_trans);

We are�DOVR�JRLQJ�WR�FUHDWH�D�ODXQFK�ÀOH�WR�ODXQFK�WKH�QRGH��WKH�PRGHO��DQG�DOO�
WKH�QHFHVVDU\�HOHPHQWV��&UHDWH�D�QHZ�ÀOH�ZLWK�WKH�QDPH�display_xacro.launch
(content given as follows) and put it in the chapter5_tutorials/launch folder:

<launch>
 <arg name="model" />
 <arg name="gui" default="False" />
 <param name="robot_description" command="$(find xacro)/xacro.py
$(arg model)" />
 <param name="use_gui" value="$(arg gui)"/>
 <node name="state_publisher" pkg="chapter5_tutorials"
type="state_publisher" />
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />
 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find
chapter5_tutorial)/urdf.vcg" />
</launch>

Using the following command, we will start our new node with the complete model.
We will see the 3D model on rviz moving all the articulations:

$ roslaunch chapter5_tutorials state_xacro.launch model:="`rospack find
chapter5_tutorials`/urdf/robot1.xacro"

3D Modeling and Simulation

[�����]

In the following screenshot, you can see a mix of four screens captured to show you
WKH�PRYHPHQWV�WKDW�ZH�REWDLQHG�ZLWK�WKH�QRGH��,I�\RX�VHH�LW�ÀQH��\RX�ZLOO�VHH�WKH�
trajectory through a circle and the arms moving:

�'�PRGHOLQJ�ZLWK�6NHWFK8S
It is possible to generate the model using 3D programs such as SketchUp. In this
section we will show you how to make a simple model, export it, generate an urdf,
and watch the model on rviz. Notice that SketchUp works on Windows and Mac,
and that this model was developed using Mac and not Linux.

First, you need to have SketchUp installed on your computer. When you have it,
make a model similar to the following:

Chapter 5

[�����]

7KH�PRGHO�ZDV�H[SRUWHG�RQO\�WR�RQH�ÀOH��VR�WKH�ZKHHOV�DQG�FKDVVLV�DUH�WKH�VDPH�
object. If you want to make a robot model with mobile parts, you must export each
SDUW�LQ�D�VHSDUDWH�ÀOH�

To export the model, navigate to Export | 3D Model | Save As COLLADA File
(*.dae).

:H�QDPHG�WKH�ÀOH�bot.dae and we saved it in the chapter5_tutorials/urdf folder.

1RZ��WR�XVH�WKH��'�PRGHO��ZH�DUH�JRLQJ�WR�FUHDWH�D�QHZ�ÀOH�LQ�WKH�chapter5_
tutorials/urdf folder with the name dae.urdf and type in the following code:

<?xml version="1.0"?>
<robot name="robot1">
 <link name="base_link">
 <visual>
 <geometry>
 <mesh scale="0.025 0.025 0.025" filename="package://chapter5_
tutorials/urdf/bot.dae"/>
 </geometry>
 <origin xyz="0 0 0.226"/>
 </visual>
 </link>
</robot>

3D Modeling and Simulation

[�����]

Test the model with the following command:

$ roslaunch chapter5_tutorials display.launch model:="`rospack find
chapter5_tutorials`/urdf/dae.urdf"

You will see the following output:

6LPXODWLRQ�LQ�526
In order to make simulations with our robots on ROS, we are going to use Gazebo.

Gazebo (http://gazebosim.org/) is a multirobot simulator for outdoor
environments. It is capable of simulating a population of robots, sensors, and
objects in a three-dimensional world. It generates both realistic sensor feedback
and physically plausible interactions between objects.

In this section you will learn how to use the model created before, how to include
a laser sensor, and how to move it as a real robot.

Chapter 5

[�����]

8VLQJ�RXU�85')��'�PRGHO�LQ�*D]HER
We are going to use the model that we designed in the last section, but without the
arm, to make it simple.

It is necessary to complete the URDF model because in order to use it in Gazebo we
need to declare more elements. We will also use the .xacro�ÀOH��DOWKRXJK�WKLV�PD\�
EH�PRUH�FRPSOH[��LW�LV�PRUH�SRZHUIXO�IRU�GHYHORSPHQW�RI�WKH�FRGH��<RX�KDYH�D�ÀOH�
ZLWK�DOO�WKH�PRGLÀFDWLRQV�DW�chapter5_tutorials/urdf/robot1_base_01.xacro:

<link name="base_link">
 <visual>
 <geometry>
 <box size="0.2 .3 .1"/>
 </geometry>
 <origin rpy="0 0 1.54" xyz="0 0 0.05"/>
 <material name="white">
 <color rgba="1 1 1 1"/>
 </material>
 </visual>
 <collision>
 <geometry>
 <box size="0.2 .3 0.1"/>
 </geometry>
 </collision>
 <xacro:default_inertial mass="10"/>
</link>

This is the new code for the chassis of the robot base_link. Notice that the collision
and inertial sections are necessary to run the model on Gazebo in order to calculate
the physics of the robot.

To launch everything, we are going to create a new .launch�ÀOH��&UHDWH�D�QHZ�ÀOH�
with the name gazebo.launch in the chapter5_tutorials/launch folder, and put
in the following code:

<?xml version="1.0"?>
<launch>
<param name="/use_sim_time" value="true" />
 <include file="$(find gazebo_worlds)/launch/empty_world.launch"/>
 <arg name="model" />
 <param name="robot_description" command="$(find xacro)/xacro.py
$(arg model)" />
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" ></node>

3D Modeling and Simulation

[�����]

 <node pkg="robot_state_publisher" type="state_publisher"
name="robot_state_publisher" output="screen" >
 <param name="publish_frequency" type="double" value="50.0" />
 </node>
 <node name="spawn_robot" pkg="gazebo" type="spawn_model"
args="-urdf -param robot_description -z 0.1 -model robot_model"
respawn="false" output="screen" />
</launch>

To launch�WKH�ÀOH��XVH�WKH�IROORZLQJ�FRPPDQG�

$ roslaunch chapter5_tutorials gazebo.launch model:="`rospack find
chapter5_tutorials`/urdf/robot1_base_01.xacro"

You�ZLOO�QRZ�VHH�WKH�URERW�LQ�*D]HER��&RQJUDWXODWLRQV��7KLV�LV�\RXU�ÀUVW�VWHS�LQ�WKH�
virtual world:

As you can see, the model has no texture. In rviz, you observed the textures that
ZHUH�GHFODUHG�LQ�WKH�85')�ÀOH��%XW�LQ�*D]HER��\RX�FDQQRW�VHH�WKHP�

7R�DGG�WH[WXUHV�YLVLEOH�LQ�*D]HER��XVH�WKH�IROORZLQJ�FRGH�RQ�\RXU�PRGHO�ÀOH��&RS\�
the chapter5_tutorials/urdf/robot1_base_01.xacro�ÀOH�DQG�VDYH�LW�ZLWK�WKH�
name robot1_base_02.xacro and add the following code inside:

Chapter 5

[�����]

<gazebo reference="base_link">
 <material>Erratic/BlueBrushedAluminum</material>
 </gazebo>

 <gazebo reference="wheel_1">
 <material>Erratic/Black</material>
 </gazebo>

 <gazebo reference="wheel_2">
 <material>Erratic/Black</material>
 </gazebo>

 <gazebo reference="wheel_3">
 <material>Erratic/Black</material>
 </gazebo>

 <gazebo reference="wheel_4">
 <material>Erratic/Black</material>
 </gazebo>

/DXQFK�WKH�QHZ�ÀOH�DQG�\RX�ZLOO�VHH�WKH�VDPH�URERW��EXW�ZLWK�WKH�DGGHG�WH[WXUHV�

$ roslaunch chapter5_tutorials gazebo.launch model:="`rospack find
chapter5_tutorials`/urdf/robot1_base_02.xacro"

You will see the following output:

3D Modeling and Simulation

[�����]

Adding sensors to Gazebo
In Gazebo, you can simulate the physics of the robot and its movement, and you can
also simulate sensors.

Normally, when you want to add a new sensor you need to implement the behavior.
Fortunately, some sensors are already developed for Gazebo and ROS.

In this section we are going to add a laser sensor to our model. This sensor will be
a new part on the robot. You need to select where to put it. In Gazebo, you will see
a new 3D object that looks like a Hokuyo laser. We talked about this sensor in the
past chapters.

We are going to take the laser from the erratic_description package. This is the
magic of ROS, you can re-use code from other packages for your development.

Only, it is necessary to add the next lines on our .xacro�ÀOH�

<include filename="$(find erratic_description)/urdf/erratic_hokuyo_
laser.xacro" />
<!-- BASE LASER ATTACHMENT -->
<erratic_hokuyo_laser parent="base_link">
 <origin xyz="0.18 0 0.11" rpy="0 0 0" />
</erratic_hokuyo_laser>

Launch the new model with the following command:

$ roslaunch chapter5_tutorials gazebo.launch model:="`rospack find
chapter5_tutorials`/urdf/robot1_base_03.xacro"

You will see the robot with the laser module attached to it, as shown in the
following screenshot:

Chapter 5

[�����]

Notice that this laser is generating "real" data as a real laser. You can see the data
generated using the rostopic echo command:

$ rostopic echo /base_scan/scan

/RDGLQJ�DQG�XVLQJ�D�PDS�LQ�*D]HER
In Gazebo, you can use�YLUWXDO�ZRUOGV�DV�RIÀFHV��PRXQWDLQV��DQG�VR�RQ�

In this section�ZH�DUH�JRLQJ�WR�XVH�D�PDS�RI�WKH�RIÀFH�RI�:LOORZ�*DUDJH�WKDW�LV�LQVWDOOHG�
by default with the ROS installation.

This 3D model is in the gazebo_worlds package. If you do not have the package,
install it before you continue.

To check the model, you will only have to start the .launch�ÀOH�XVLQJ�WKH�
following command:

$ roslaunch gazebo_worlds wg_collada_world.launch

3D Modeling and Simulation

[�����]

<RX�ZLOO�VHH�WKH��'�RIÀFH�LQ�*D]HER��7KH�RIÀFH�RQO\�KDV�ZDOOV��<RX�FDQ�DGG�WDEOHV��
chairs, and much more, if you want. Please note that Gazebo requires a good machine
with a relatively recent GPU. You can check whether your graphics are supported at
the Gazebo homepage. Also, note that sometimes this software crashes, but great effort
is being taken by the community to make it more stable. Usually, it is enough to run it
again (probably several times) if it crashes. If the problem persists, our advice is to try
with a newer version, which will be installed by default with more recent distributions
of ROS.

What we are going to do now is create a new .launch�ÀOH�WR�ORDG�WKH�PDS�DQG�WKH�
URERW�WRJHWKHU��7R�GR�WKDW��FUHDWH�D�QHZ�ÀOH�LQ�WKH�chapter5_tutorials/launch
folder with the name gazebo_map_robot.launch and add the following code:

<?xml version="1.0"?>
<launch>
 <!-- this launch file corresponds to robot model in ros-pkg/robot_
descriptions/pr2/erratic_defs/robots for full erratic -->

 <param name="/use_sim_time" value="true" />

 <!-- start up wg world -->
 <include file="$(find gazebo_worlds)/launch/wg_collada_world.
launch"/>

Chapter 5

[�����]

 <arg name="model" />
 <param name="robot_description" command="$(find xacro)/xacro.py
$(arg model)" />

 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" ></node>
 <!-- start robot state publisher -->
 <node pkg="robot_state_publisher" type="state_publisher"
name="robot_state_publisher" output="screen" >
 <param name="publish_frequency" type="double" value="50.0" />
 </node>

 <node name="spawn_robot" pkg="gazebo" type="spawn_model" args="-urdf
-param robot_description -z 0.1 -model robot_model" respawn="false"
output="screen" />
</launch>

1RZ�ODXQFK�WKH�ÀOH�RI�WKH�PRGHO�ZLWK�WKH�ODVHU�

$ roslaunch chapter5_tutorials gazebo_map_robot.launch model:="`rospack
find chapter5_tutorials`/urdf/robot1_base_03.xacro"

You will see the robot and the map on the Gazebo GUI. The next step is to command
the robot to move and receive the simulated readings of its sensors as it evolves
around the virtual world loaded in the simulator.

Moving the robot in Gazebo
A differential wheeled robot is a mobile robot whose movement is based on two
separately driven wheels placed on either side of the robot body. It can thus change
its direction by varying the relative rate of rotation of its wheels and does not require
an additional steering motion.

As we said before, in Gazebo you need to program the behaviors of the robot, joints,
sensors, and so on. As it happened for the laser, Gazebo already has a differential
drive implemented and we can use it to move our robot.

Before we continue, the erratic_robot stack is necessary for this section. The
example will use the differential erratic robot drive from erratic_robot to move
the 3D model in gazebo. To install the stack, use the following command:

$ sudo apt-get install ros-fuerte-erratic-robot

3D Modeling and Simulation

[�����]

The differential drive is usually meant for robots with only two wheels, but our
robot has four wheels. So, we have a problem with the movement, since it will
not be correct.

$Q\ZD\��ZH�DUH�JRLQJ�WR�XVH�LW�IRU�RXU�URERW��VLQFH�WKH�PRGLÀFDWLRQ�LV�VLPSOH��,Q�IDFW��
you can take the code of the differential drive and modify it to add four wheels.

7R�XVH�WKLV�FRQWUROOHU��\RX�RQO\�KDYH�WR�DGG�WKH�IROORZLQJ�FRGH�WR�WKH�PRGHO�ÀOH�

<gazebo>
<controller:diffdrive_plugin name="differential_drive_controller"
plugin="libdiffdrive_plugin.so">
 <alwaysOn>true</alwaysOn>
 <update>100</update>
 <updateRate>100.0</updateRate>
 <leftJoint>base_to_wheel4</leftJoint>
 <rightJoint>base_to_wheel1</rightJoint>
 <wheelSeparation>0.33</wheelSeparation>
 <wheelDiameter>0.1</wheelDiameter>
 <torque>5</torque>
 <interface:position name="position_iface_0"/>
 <topicName>cmd_vel</topicName>
</controller:diffdrive_plugin>
</gazebo>

7KH�SDUDPHWHUV�WKDW�\RX�FDQ�VHH�LQ�WKH�FRGH�DUH�VLPSO\�WKH�FRQÀJXUDWLRQ�VHW�XS�WR�
make the controller work with our four-wheeled robot.

For example, we selected the base_to_wheel4 and base_to_wheel1 joints as the
principal wheels to move the robot. Remember that we have four wheels, but the
controller only needs two of them.

Another interesting parameter is topicName. We need to publish commands with
this name in order to control the robot.

,W�LV�QHFHVVDU\�WR�DGG�DQRWKHU�OLQN�DW�WKH�EHJLQQLQJ�RI�WKH�PRGHO��%HIRUH��WKH�ÀUVW�
link was base_link��QRZ�WKH�ÀUVW�OLQN�LV�base_footprint.

The controller will make the transformation between this link and it will create
another link called odom. The odom link will be used with the navigation stack
in future chapters:

<link name="base_footprint">
 <visual>
 <geometry>
 <box size="0.001 0.001 0.001"/>
 </geometry>

Chapter 5

[�����]

 <origin rpy="0 0 0" xyz="0 0 0"/>
 </visual>
 <xacro:default_inertial mass="0.0001"/>
</link>

<gazebo reference="base_footprint">
 <material>Gazebo/Green</material>
 <turnGravityOff>false</turnGravityOff>
</gazebo>

<joint name="base_footprint_joint" type="fixed">
 <origin xyz="0 0 0" />
 <parent link="base_footprint" />
 <child link="base_link" />
</joint>

All these changes are in the chapter5_tutorials/urfd/robot1_base_04.xacro�ÀOH�

Now, to launch the model with the controller and the map, we use the
following command:

$ roslaunch chapter5_tutorials gazebo_map_robot.launch model:="`rospack
find chapter5_tutorials`/urdf/robot1_base_04.xacro"

You will see the map with the robot on the Gazebo screen:

3D Modeling and Simulation

[�����]

Now we are going to move the robot using a node. This node is in the erratic_
teleop package.

Run the following command:

$ rosrun erratic_teleop erratic_keyboard_teleop

You will see a new shell with some instructions and WASD keys to move the robot.

If you start rviz now, you will see the 3D model and the laser data on the screen.
If you move the robot, you will see the robot moving on rviz.

6XPPDU\
For people learning robotics, the ability to have access to real robots is fun and useful,
but not everyone has access to a real robot. This is why simulators exist.

In this chapter you have learned how to create a 3D model of your own robot.
This includes a detailed explanation that guides you in the tasks of adding textures
and creating joints, and also describes how to move the robot with a node.

Chapter 5

[�����]

Then we have introduced Gazebo, a simulator where you can load the 3D model
of your robot and simulate it moving and sensing a virtual world. This simulator
is widely used by the ROS community and it already supports many real robots
in simulation.

Indeed, we have seen how to re-use parts of other robots to design ours in a
nutshell. In particular, we have included a gripper and added sensors, such as
D�ODVHU�UDQJH�ÀQGHU�

Hence, it is not mandatory to create a robot from scratch to start using the simulator.
The community has developed a lot of robots and you can download the code, execute
them in ROS and Gazebo, and modify them if it turns out to be necessary.

<RX�FDQ�ÀQG�D�OLVW�RI�WKH�URERWV�VXSSRUWHG�RQ�526�RQ�http://www.ros.org/wiki/
Robots.

In the next chapter, we will learn about computer vision and packages, such as
SLAM and visual recognition, to perform various tasks with cameras.

Computer Vision
In ROS, the support for computer vision is provided by means of camera drivers, the
integration of OpenCV libraries, tools to set the frame transform (tf) of the camera
optical frame with respect to our robot, and a good number of third-party tools, which
comprise algorithms for visual odometry, augmented reality, object detection, and
perception, among others.

7KH�ÀUVW�FDSDELOLW\�WKDW�526�RIIHUV�XV�ZKHQ�ZRUNLQJ�ZLWK�YLVLRQ�LV�WKH�DELOLW\�WR�
manage FireWire (IEEE1394a or IEEE1394b) cameras. Indeed, a package in the main
ROS framework contains the drivers for such cameras. In the case of USB or gigabit
Ethernet cameras, we must install third-party drivers or use our own. In this chapter,
we will list USB drivers that come as ROS packages, and we will also provide a driver
source code implemented with the OpenCV video capture API. USB cameras are pretty
LQH[SHQVLYH�DQG�HDV\�WR�ÀQG�RQ�WKH�PDUNHW��VR�WKH\�IROORZ�WKH�JRDO�RI�WKLV�ERRN��OHDUQ�
by practice.

This chapter follows the ensuing outline:

�� First, we will see how to connect and run cameras in ROS, starting with
FireWire cameras, which have the best support in ROS. But then we will
also cover the different options that we have to work with USB cameras,
ZKLFK�DUH�HDVLHU�WR�ÀQG�DQG�DUH�FKHDSHU��LQGHHG��ZH�ZLOO�DOVR�H[SODLQ�
how to implement a camera driver with OpenCV for USB cameras.

�� The USB camera driver will use most of the APIs of OpenCV. We will have
a look at how to connect the frame captured with ROS images, by using the
cv_bridge package, which is explained in detail. Similarly, we will introduce
the ImageTransport API that allows publishing an image in several formats
with or without compression.

Computer Vision

[�����]

OpenCV is probably the most used open source computer vision
library out there. ROS comes with the binaries of one of the latest stable
versions (or just depends on the OpenCV library Debian package
installed in your system in recent ROS distributions), so we can easily
use it in our nodes. In order to subscribe and publish images, the
OpenCV image format can be transformed to the ROS image package
by means of the cv_bridge and image_transport packages, whose
APIs will be explained later in this chapter.

$OVR��ZH�ZLOO�VHH�KRZ�WR�FRQÀJXUH�WKH�FDPHUD�SDUDPHWHUV��D�IHDWXUH�WKDW�
is specially supported in FireWire cameras.

�� Having OpenCV inside ROS, we have the ability to implement a wide range
of computer vision and machine learning algorithms, or even to run some
algorithms or examples already present in this library. Here, we will not
discuss the OpenCV API as it is outside the scope of this book. Alternatively,
we advise the reader to check the online documentation (http://docs.
opencv.org) or any book about OpenCV and computer vision itself. Just
remember that you can use it inside ROS nodes. What we will explain here
is how to link to OpenCV in your packages or nodes.

�� We will also use the visualization tools already explained in Chapter 3,
Debugging and Visualization. We will refer to the image_view package and
the visualization nodes for monocular and stereo vision. Special attention
LV�JLYHQ�WR�WKH�VWHUHR�RQH��VLQFH�LW�DOORZV�FRQÀJXULQJ�WKH�GLVSDULW\�LPDJH�
algorithm correctly. Then, in rviz, we can see the 3D point cloud obtained
IURP�WKH�FDOLEUDWHG�VWHUHR�SDLU�DQG�WKH�ÀQH�WXQHG�GLVSDULW\�LPDJH�

�� Special attention is given to the camera calibration, whose results can be
integrated in a particular camera information message. Some tools help
in the process of calibration, with support for different calibration patterns
and the calibration optimization engine in the kernel. Furthermore, we
cover stereo cameras and explain how to manage rigs of two or more
cameras, with more complex setups than a binocular camera.
Note that in Chapter 3, Debugging and Visualization�ZH�EULHÁ\�VKRZ�KRZ�WR�
calibrate cameras, but here we go a step further explaining how everything is
integrated in the system. For instance, stereo vision will let you obtain depth
information from the world, up to some extent and with certain conditions.
Hence, we will see how to inspect that information as point clouds and how
to get the best quality and setup for our camera.

Chapter 6

[�����]

�� 526�FRPHV�ZLWK�DQ�LPDJH�SLSHOLQH�WKDW�VLPSOLÀHV�WKH�SURFHVV�RI�FRQYHUWLQJ�
RAW images acquired by the camera into monochrome (grayscale) and color
LPDJHV��7KLV�VRPHWLPHV�PHDQV�WR�GH�%D\HU�WKH�5$:�LPDJH��LI�LW�LV�FRGLÀHG�
as a Bayer pattern, which is common in high-quality FireWire cameras. If
the camera has been calibrated, the calibration information is used to rectify
the images. By rectifying images we mean to correct the distortion using the
GLVWRUWLRQ�FRHIÀFLHQWV�FRPSXWHG�GXULQJ�WKH�FDOLEUDWLRQ�SURFHVV��)LQDOO\��IRU�
stereo images, since we have the baseline between the left and right cameras,
we can compute the disparity image that allows us to obtain depth information
DQG�D��'�SRLQW�FORXG�RQFH�LW�KDV�EHHQ�ÀQH�WXQHG��+HUH�ZH�ZLOO�JLYH�VRPH�
DGYLFH�RQ�KRZ�WR�WXQH�LW��ZKLFK�PD\�EH�TXLWH�GLIÀFXOW�IRU�ORZ�TXDOLW\�FDPHUDV�
and sometimes requires good calibration results beforehand.

�� There are also some stacks or just packages that provide very powerful
algorithms to perform interesting robotics tasks in ROS. We will enumerate
some of them and will also show an example for visual odometry. In
SDUWLFXODU��WKLV�FKDSWHU�ZLOO�ÀQLVK�ZLWK�D�WXWRULDO�WR�VHW�XS�DQG�UXQ�WKH�
viso2_ros wrapper of the libviso2 visual odometry library, using a
stereo pair built with two cheap webcams attached to a bar. Other visual
odometry libraries will be mentioned, for example, fovis, as well as
some advice to start working with them, and how to improve the results
with RGB-D sensors, such as Kinect, or even sensor fusion or additional
information in the case of monocular vision.

Note that most of these tools are quite recent and you will need
ROS Groovy and the catkin-style build system, as we will be
explaining in the Performing visual odometry with viso2 section.
Since the visual odometry requires good cameras, we have also
included a demo using some images available online.

&RQQHFWLQJ�DQG�UXQQLQJ�WKH�FDPHUD
:H�DUH�JRLQJ�WR�VWDUW�IURP�WKH�YHU\�EHJLQQLQJ��7KH�ÀUVW�VWHS�ZH�PXVW�DFFRPSOLVK�LV�
connecting our camera to our computer, running the driver, and checking the images
it acquires in ROS. Before we go into ROS, it is always a good idea to use external
tools to check that the camera is actually recognized by our system, which in our
case is an Ubuntu distro. We will start with FireWire cameras, since they are better
supported in ROS, and later we will see USB ones.

Computer Vision

[174]

)LUH:LUH�,(((�����FDPHUDV
Connect your camera to the computer, which should have a FireWire IEEE1394a
or IEEE1394b slot (you will probably need an IEEE1394 board or a laptop such
as a Mac). Then, in Ubuntu, you only need Coriander to check that the camera is
recognized and working. If not already installed, just install Coriander. Then run
it (in the older Ubuntu distros, you may have to run it as sudo):

coriander

It will automatically detect all your FireWire cameras, as shown in the
following screenshot:

The great thing about Coriander is that it also allows us to view the image and
FRQÀJXUH�WKH�FDPHUD��,QGHHG��RXU�DGYLFH�LV�WR�XVH�&RULDQGHU
V�FDPHUD�FRQÀJXUDWLRQ�
interface and then take those values into ROS, as we will see later. The advantage of
this approach is that Coriander gives us the dimensional values of some parameters
and in ROS there are some parameters that sometimes fail to be set, for example,
gamma, and they must be set beforehand in Coriander as a workaround.

Chapter 6

[�����]

Now that we know the camera is working, we can close Coriander and run the
ROS driver using the following command:

rosrun camera1394 camera1394_node

Just have roscore�UXQQLQJ�DQG�UXQ�WKH�SUHFHGLQJ�FRPPDQG��,W�ZLOO�UXQ�WKH�ÀUVW�
camera on the bus, but note that you can select the camera by its GUID, which you
can see in Coriander's GUI. In order to select the camera by its GUID and set its
ZRUNLQJ�PRGH�DQG�DOO�LWV�SDUDPHWHUV��ZH�DUH�JRLQJ�WR�XVH�D�ÀOH�EHFDXVH�WKHUH�DUH�
so many to pass them by the command line. This is, therefore, the way to do it in
a maintainable manner, which can be integrated in a .launch�ÀOH�as well.

The FireWire camera parameters supported are listed and assigned certain values
in the params/firewire_camera/format7_mode0.yaml�ÀOH��VKRZQ�DV�IROORZV�

guid: 00b09d0100ab1324 # (defaults to first camera on bus)
iso_speed: 800 # IEEE1394b
video_mode: format7_mode0 # 1384x1036 @ 30fps bayer pattern
Note that frame_rate is overwritten by frame_rate_feature; some
useful values:
21fps (480)
frame_rate: 21 # max fps (Hz)
auto_frame_rate_feature: 3 # Manual (3)
frame_rate_feature: 480
format7_color_coding: raw8 # for bayer
bayer_pattern: rggb
bayer_method: HQ
auto_brightness: 3 # Manual (3)
brightness: 0
auto_exposure: 3 # Manual (3)
exposure: 350
auto_gain: 3 # Manual (3)
gain: 700
We cannot set gamma manually in ROS, so we switch it off
auto_gamma: 0 # Off (0)
#gamma: 1024 # gamma 1
auto_saturation: 3 # Manual (3)
saturation: 1000
auto_sharpness: 3 # Manual (3)
sharpness: 1000
auto_shutter: 3 # Manual (3)
#shutter: 1000 # = 10ms
shutter: 1512 # = 20ms (1/50Hz), max. in 30fps
auto_white_balance: 3 # Manual (3)

Computer Vision

[�����]

white_balance_BU: 820
white_balance_RV: 520
frame_id: firewire_camera
camera_info_url: package://chapter6_tutorials/calibration/firewire_
camera/calibration_firewire_camera.yaml

The values must be obtained just by watching the images acquired, for example,
in Coriander, and setting the values that give better images. The GUID parameter
is used to select our camera, which is a unique value. You should usually set the
shutter speed to a frequency equal to or a multiple of the electric light (for instance 50
Hz or 60 Hz, in Europe or USA, respectively) you have in the room. This can be done
ZLWK�FODVVLFDO�OLJKW�EXOEV�DQG�ÁXRUHVFHQWV�DV�ZHOO� If outside with sunlight, you only
have to worry about setting a value that gives you a light image. You can also put a
high gain, but it will introduce noise. However, in general it is better to have such a
salt-and-pepper noise than a low shutter speed (to receive most light), because with a
low shutter speed we will encounter motion blur and most algorithms perform badly
with that. $V�\RX�ZLOO�VHH��WKH�FRQÀJXUDWLRQ�GHSHQGV�RQ�WKH�OLJKWLQJ�FRQGLWLRQV�LQ�
the environment and you may have to adapt it to them. This is quite easy using the
ROS Fuerte reconfigure_gui interface:

rosrun dynamic_reconfigure dynamic_reconfigure_gui /camera

,Q�WKH�IROORZLQJ�VFUHHQVKRW�ZH�VHH�D�SDUWLFXODU�FRQÀJXUDWLRQ�LQ�&RULDQGHU�DQG�WKH�
output image:

Chapter 6

[177]

,Q�WKH�IROORZLQJ�VFUHHQVKRW�ZH�VHH�D�GLIIHUHQW�FRQÀJXUDWLRQ�ZLWK�D�EHWWHU�H[SRVXUH�RI�
the resulting image acquired:

We assume the camera's namespace is /camera. Then, we can change all the
SDUDPHWHUV��ZKLFK�DUH�VSHFLÀHG�LQ�WKH�camera1394�&)*�ÀOH��DV�ZH�KDYH�VHHQ�LQ�
Chapter 3, Debugging and Visualization. Here, for your convenience, you can create
a .launch�ÀOH�DQG�QDPH�LW�firewire_camera.launch (with the following code)
and place it in the launch folder:

<launch>
 <!-- Arguments -->
 <!-- Show video output (both RAW and rectified) -->
 <arg name="view" default="false"/>
 <!-- Camera params (config) -->
 <arg name="params" default="$(find chapter6_tutorials)/params/
firewire_camera/format7_mode0.yaml"/>

 <!-- Camera driver -->
 <node pkg="camera1394" type="camera1394_node" name="camera1394_
node">
 <rosparam file="$(arg params)"/>
 </node>

 <!-- Camera image processing (color + rectification) -->

Computer Vision

[�����]

 <node ns="camera" pkg="image_proc" type="image_proc" name="image_
proc"/>

 <!-- Show video output -->
 <group if="$(arg view)">
 <!-- Image viewer (non-rectified image) -->
 <node pkg="image_view" type="image_view" name="non_rectified_
image">
 <remap from="image" to="camera/image_color"/>
 </node>

 <!-- Image viewer (rectified image) -->
 <node pkg="image_view" type="image_view" name="rectified_image">
 <remap from="image" to="camera/image_rect_color"/>
 </node>
 </group>
</launch>

It starts the camera1394 driver with the parameters shown thus far. Then, it also
runs the image pipeline we will see further in the code in order to obtain the color-
UHFWLÀHG�LPDJHV�XVLQJ�WKH�GH�%D\HULQJ�DOJRULWKP�DQG�WKH�FDOLEUDWLRQ�SDUDPHWHUV�
(once the camera has been calibrated). Finally, we have a conditional group to
YLVXDOL]H�WKH�FRORU�DQG�FRORU�UHFWLÀHG�LPDJHV�XVLQJ�image_view. We use groups
intensively in other .launch�ÀOHV�WKDW�FRPH�ZLWK�WKH�FRGH�DFFRPSDQ\LQJ�WKLV�ERRN�

To sum it up, in order to run your FireWire camera in ROS, and view the images
RQFH�\RX�KDYH�VHW�LWV�*8,'�LQ�WKH�SDUDPHWHUV�ÀOH��MXVW�UXQ�WKH�IROORZLQJ�FRPPDQG�

roslaunch chapter6_tutorials firewire_camera.launch view:=true

7KHQ��\RX�FDQ�DOVR�FRQÀJXUH�LW�G\QDPLFDOO\�ZLWK�reconfigure_gui.

86%�FDPHUDV
Now we are going to do the same with USB cameras. The only problem is that,
surprisingly, they are not inherently supported by ROS. First of all, once you connect
your camera to the computer, test it with any chatting or video meeting program,
for example, Skype or Cheese. The camera resource should appear in /dev/videoX,
where X should be a number starting from 0 (that may be your internal webcam if
you are using a laptop).

Chapter 6

[�����]

There are two main options that deserve to be mentioned as possible USB camera
drivers for ROS. First, we have usb_cam. To install it, run the following command:

svn co http://svn.code.sf.net/p/bosch-ros-pkg/code/trunk/stacks/bosch_
drivers/usb_cam
rosstack profile && rospack profile
roscd usb_cam
rosmake

After that is done, you can run the following command:

roslaunch chapter6_tutorials usb_cam.launch view:=true

It just runs rosrun usb_cam usb_cam_node and also shows the camera images with
image_view, so you should see something like the following screenshot. It has the
RAW image of the USB camera, which is already in color:

Similarly, another good option is gscam, which is installed as follows:

$ svn co http://brown-ros-pkg.googlecode.com/svn/trunk/experimental/gscam
$ echo 'include $(shell rospack find mk)/cmake.mk' > Makefile
rosmake

Note that we had to change the Makefile�ÀOH�EHFDXVH�LW�ZDV�ZURQJ��WKLV�LV�WKH�
content of all Makefile�ÀOHV�LQVLGH�526�SDFNDJHV��EXW�LW�VHHPV�WKDW�WKLV�Makefile
ÀOH�ZDV�LJQRUHG�E\�DQ�LJQRULQJ�UXOH�LQ�WKH�UHSRVLWRU\�RI�WKH�VRIWZDUH���7KHQ��MXVW�
run this command:

roslaunch chapter6_tuturials gscam.launch view:=true

Computer Vision

[�����]

As for usb_cam, this .launch�ÀOH�UXQV�rosrun gscam gscam, and also sets some
camera parameters. It also visualizes the camera images with image_view, as shown
in the following screenshot:

The parameters required by gscam are (see params/gscam/logitech.yaml) as follows:

gscam_config: v4l2src device=/dev/video0 ! video/x-raw-rgb,framerate=30/1
! ffmpegcolorspace

frame_id: gscam

camera_info_url: package://chapter6_tutorials/calibration/gscam/
calibration_gscam.yaml

The gscam_config command invokes the v4l2src command with the appropriate
arguments to run the camera. The rest of the parameters will be useful once the camera
is calibrated and used in an ROS image pipeline.

0DNLQJ�\RXU�RZQ�86%�FDPHUD�GULYHU�ZLWK�
OpenCV
Although we have the two options previously mentioned, this book comes
with its own USB camera driver, implemented on top of OpenCV, using the
cv::VideoCapture class. It runs the camera and also allows changing some of its
parameters, as long as they are supported. This is very simple and it allows setting
the calibration information in the same way as with FireWire cameras. Indeed,
with usb_cam this is not possible because the CameraInfo message is not available.
Hence, params/usb_cam/logitech.yaml the camera_info_url is not set in the
SDUDPHWHUV�ÀOH��:LWK�UHJDUG�WR�gscam, we will have more control.

Chapter 6

[�����]

:H�FDQ�FKDQJH�WKH�FDPHUD�FRQÀJXUDWLRQ�DQG�DOVR�VHH�KRZ�WR�SXEOLVK�WKH�FDPHUD�
images and information in ROS from scratch. In order to implement a camera driver
using OpenCV, we have two options regarding the way in which to read images
from the camera. First, we can do a polling according to a given number of frames
per second (FPS). Second, we can set a timer for the period of such FPS and during
the callback of the timer we perform the actual reading. Depending on the FPS, our
solution may be better than the others in terms of CPU consumption. Anyway, note
that the polling is not active, since the OpenCV reading function is blocked, and
other processes can take the CPU until an image is ready. In general, for fast FPS,
it is better to use polling, so we do not incur a time penalty for using the timer and
its callback. For a low FPS, the timer should be similar to the polling, and the code
is way cleaner. We invite the reader to compare both implementations in the src/
camera_polling.cpp and src/camera_timer.cpp�ÀOHV��)RU�WKH�VDNH�RI�VSDFH��
here ZH�VKRZ�WKH�WLPHU�EDVHG�DSSURDFK��,QGHHG��WKH�ÀQDO�GULYHU��LQ�src/camera.
cpp��XVHV�D�WLPHU��1RWH�WKDW�WKH�ÀQDO�GULYHU�DOVR�LQFOXGHV�WKH�camera information
management, which we will see in the following section.

&UHDWLQJ�WKH�86%�FDPHUD�GULYHU�SDFNDJH
In the manifest.xml�ÀOH��we must set the dependency with OpenCV, the ROS
Image message libraries, and the related packages. They are as follows:

 <depend package="sensor_msgs"/>
 <depend package="opencv2"/>
 <depend package="cv_bridge"/>
 <depend package="image_transport"/>

Consequently, in src/camera_timer.cpp we have the following headers:

#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <opencv2/highgui/highgui.hpp>

The image_transport API allows publishing the images using several transport
formats, which can be compressed images and different codecs being done seamlessly
for the user based on plugins installed in the ROS system, for example, compressed
Theora. The cv_bridge element is used to convert from OpenCV Image to the ROS
Image message, for which we may need the image encodings of sensor_msgs, in
case of grayscale/color conversion. Finally, we need the highgui API of OpenCV
(opencv2), in order to use cv::VideoCapture.

Computer Vision

[�����]

Here we will explain the main parts of the code in src/camera_timer.cpp, which
have a class that implements the camera driver. Its attributes are as follows:

ros::NodeHandle nh;
image_transport::ImageTransport it;
image_transport::Publisher pub_image_raw;

cv::VideoCapture camera;
cv::Mat image;
cv_bridge::CvImagePtr frame;

ros::Timer timer;

int camera_index;
int fps;

8VLQJ�WKH�,PDJH7UDQVSRUW�$3,�WR�SXEOLVK�WKH�
FDPHUD�IUDPHV
As usual, we need the node handle. Then, we need an ImageTransport object,
which is used to send the images in all available formats in a seamless way.
In the code we only need to use the publisher, but note that it must be the
implementation of the image_transport library, and not the common
ros::Publisher for an Image message.

Then we have the OpenCV stuff to capture images/frames. In the case of the frame,
we directly use the cv_brigde frame, which is a CvImagePtr, since we can access
WKH�LPDJH�ÀHOG�LW�KDV�

Finally, we have the timer and the basic camera parameters for a driver to work.
This is the most basic driver possible. These parameters are the camera index, that is,
the number for the /dev/videoX device, for example, 0 for /dev/video0. The camera
index is passed to cv::VideoCapture. Finally, the FPS is used to set the camera (if
possible, since some cameras do not support this) and the timer. Here we use an int
value, but it will be a double�YDOXH�LQ�WKH�ÀQDO�YHUVLRQ�RI�src/camera.cpp.

The driver uses the class constructor for the setup or initialization of the node,
the camera, and the timer:

nh.param<int>("camera_index", camera_index, DEFAULT_CAMERA_INDEX);

if (not camera.isOpened())

Chapter 6

[�����]

{
 ROS_ERROR_STREAM("Failed to open camera device!");
 ros::shutdown();
}

nh.param<int>("fps", fps, DEFAULT_FPS);
ros::Duration period = ros::Duration(1. / fps);

pub_image_raw = it.advertise("image_raw", 1);

frame = boost::make_shared< cv_bridge::CvImage >();
frame->encoding = sensor_msgs::image_encodings::BGR8;

timer = nh.createTimer(period, &CameraDriver::capture, this);

First, we open the camera, or abort if it is not open. Note that we must do this in the
attribute constructor:

camera(camera_index)

Here camera_index is passed as parameter.

Then, we read the fps parameter and compute the timer period, which is used to
create the timer and set the capture callback at the end. We advertise the image
publisher using the ImageTransport API, for image_raw (RAW images), and
initialize the frame variable.

The capture callback reads and publishes the images as follows:

camera >> frame->image;
if(not frame->image.empty())
{
 frame->header.stamp = ros::Time::now();
 pub_image_raw.publish(frame->toImageMsg());
}

It captures the images, check whether a frame was actually captured, and in that
case, sets the timestamp and publishes the image, which is then converted to an
ROS Image.

You can run this node with:

rosrun chapter6_tutorials camera_timer camera_index:=0 fps:=15

This will open the /dev/video0 camera at 15 FPS.

Computer Vision

[�����]

Then you can use image_view to see the images. Similarly, for the polling
implementation, you have a .launch�ÀOH��VR�\RX�FDQ�UXQ�WKH�IROORZLQJ�FRPPDQG�

roslaunch chapter6_tutorials camera_polling.launch camera_index:=0
fps:=15 view:=true

Now, you will see the /camera/image_raw topic images.

For the timer implementation, we have the camera.launch�ÀOH�WKDW�UXQV�WKH�ÀQDO�
version and provides more options, which we will see throughout this chapter. The
PDLQ�FRQWULEXWLRQV�RI�WKH�ÀQDO�YHUVLRQ�DUH�WKH�VXSSRUW�IRU�G\QDPLF�UHFRQÀJXUDWLRQ�
parameters, that is, it provides the camera information, which includes the camera
calibration. We are going to show how to do this in brief and we advise the reader
to check the source code for a more detailed view as well as the entire coding.

6LPLODU�WR�)LUH:LUH�FDPHUDV��ZH�FDQ�SURYLGH�VXSSRUW�IRU�G\QDPLF�UHFRQÀJXUDWLRQ�RI�
the camera parameters. However, most USB cameras do not support the changing of
some parameters. What we do is expose all OpenCV supported parameters and warn
WKH�XVHU�LQ�FDVH�RI�DQ�HUURU��RU�GLVDEOH�VRPH�RI�WKHP���7KH�FRQÀJXUDWLRQ�ÀOH�LV�LQ�cfg/
Camera.cfg. Check it for details. It supports these parameters:

�� camera_index: This is used to select the /dev/videoX device.
�� frame_width and frame_height: These provide the image resolution.
�� fps: This provides the camera's FPS value.
�� fourcc��7KLV�VSHFLÀHV�WKH�FDPHUD�SL[HOV�LQ�WKH�)285&&�IRUPDW�

(see http://www.fourcc.org, although they are typically YUYV
or MJPG, but they fail to change in most USB cameras with OpenCV).

�� brightness, contrast, saturation, and hue: These values set the camera's
properties. In digital cameras, this is done using software to the acquisition
process in the sensor or just to the resulting image.

�� gain: This parameter sets the gain of the Analog-Digital converter (ADC)
of the sensor. It introduces the salt-and-pepper noise into the image, but
increases the lightness in dark environments.

�� exposure: This determines the exposure of the images, which sets the
OLJKWQHVV�RI�WKH�LPDJHV��XVXDOO\�E\�FRQÀJXULQJ�WKH�JDLQ�DQG�VKXWWHU�VSHHG�
(in low-cost cameras this is just the integration time of the light that enters
the sensor).

�� frame_id��7KLV�VSHFLÀHV�WKH�FDPHUD�IUDPH��DQG�LV�XVHIXO�LI�ZH�XVH�LW�IRU�
navigation, as we will see in the visual odometry section.

�� camera_info_url: This is the path to the camera information, which is
basically its calibration.

Chapter 6

[�����]

7KHQ��LQ�WKH�GULYHU��ZH�XVH�D�G\QDPLF�UHFRQÀJXUH�VHUYHU�XVLQJ�

#include <dynamic_reconfigure/server.h>

We set a callback in the constructor:

server.setCallback(boost::bind(&CameraDriver::reconfig, this, _1, _2
));

$QG�WKH�FDOOEDFN�UHFRQÀJXUHV�WKH�FDPHUD��:H�HYHQ�DOORZ�FKDQJLQJ�WKH�FDPHUD��DQG�
stopping the current one. Then we use OpenCV's cv::VideoCapture class to set the
camera properties, which are part of the previously mentioned parameters. We will
see this in the case of the frame_width parameter as an example:

newconfig.frame_width = setProperty(camera, CV_CAP_PROP_FRAME_WIDTH ,
newconfig.frame_width);

It relies on a private method named setProperty that calls the set method
of cv::VideoCapture and controls the cases where it fails to send an ROS
warning message.

7KH�)36�LV�FKDQJHG�LQ�WKH�WLPHU�LWVHOI�DQG�XVXDOO\�FDQQRW�EH�PRGLÀHG�LQ�WKH�
camera as the other properties.

Finally, it is�LPSRUWDQW�WR�QRWH�WKDW�DOO�WKLV�UHFRQÀJXUDWLRQ�LV�GRQH�ZLWKLQ�D�ORFNHG�
PXWH[�WR�DYRLG�DFTXLULQJ�DQ\�LPDJHV�ZKLOH�UHFRQÀJXULQJ�WKH�GULYHU�

In order to set the camera information, ROS has a camera_info_manager library,
which helps us to do so. In short, we use:

#include <camera_info_manager/camera_info_manager.h>

And we use it to obtain the CameraInfo message. Now, in the capture callback of
the timer, we can use image_transport::CameraPublisher (and not just for the
images). The code is as follows:

 camera >> frame->image;
 if(not frame->image.empty())
 {
 frame->header.stamp = ros::Time::now();

 *camera_info = camera_info_manager.getCameraInfo();
 camera_info->header = frame->header;

 camera_pub.publish(frame->toImageMsg(), camera_info);
 }

Computer Vision

[�����]

7KLV�LV�UXQ�ZLWKLQ�WKH�SUHFHGLQJ�PXWH[�IRU�WKH�UHFRQÀJXUDWLRQ�PHWKRG��1RZ��ZH�
GR�WKLV�IRU�WKH�ÀUVW�YHUVLRQ�RI�WKH�GULYHU�EXW�DOVR�UHWULHYH�WKH�FDPHUD�LQIRUPDWLRQ�
from the manager, which is set to the node handler, the camera name, and the
camera_info_url�SDUDPHWHU��LQ�WKH�UHFRQÀJXUDWLRQ�PHWKRG��ZKLFK�LV�DOZD\V�
called once on loading). Then, we publish both the image/frame (an ROS Image)
and the CameraImage messages.

In order to use this driver, just run the following command:

roslaunch chapter6_tutorials camera.launch view:=true

It will use the params/camera/webcam.yaml parameters as default, which sets all
WKH�G\QDPLF�UHFRQÀJXUDWLRQ�SDUDPHWHUV�VHHQ�WKXV�IDU�

You can check whether the camera is working with rostopic list, rostopic hz /
camera/image_raw, and also with image_view.

With the implementation of this driver we have used all the resources available in
ROS to work with cameras, images, and computer vision. In the following sections
we will separately explain each of them, for the sake of clarity.

'HDOLQJ�ZLWK�2SHQ&9�DQG�526�LPDJHV�XVLQJ�
FYBEULGJH
Assume we have an OpenCV image, that is, a cv::Mat image. We need the cv_
bridge library to convert it into a ROS Image message and publish it. We have the
option to share or copy the image, with CvShare or CvCopy, respectively. However, if
SRVVLEOH��LW�LV�HDVLHU�WR�XVH�WKH�2SHQ&9�LPDJH�ÀHOG�LQVLGH�WKH�CvImage class provided
by cv_bridge. That is exactly what we do in the camera driver, as a pointer:

cv_bridge::CvImagePtr frame;

Being a pointer, we initialize it this way:

frame = boost::make_shared< cv_bridge::CvImage >();

And if we know the image encoding beforehand:

frame->encoding = sensor_msgs::image_encodings::BGR8;

Later, we set the OpenCV image at some point, for example, capturing it from
a camera:

camera >> frame->image;

Chapter 6

[�����]

It is also common to set the timestamp of the message at this point:

frame->header.stamp = ros::Time::now();

Now we only have to publish it. To do so, we need a publisher and it must use the
image transport API of ROS. This is shown in the following section.

3XEOLVKLQJ�LPDJHV�ZLWK�,PDJH7UDQVSRUW
We can just publish single images with ros::Publisher, but it is better to use the
image_transport publishers. It can publish both simple images or images with their
corresponding camera information. That is exactly what we do for the previously
mentioned camera driver. The ImageTransport API is useful to provide different
transport formats in a seamless way. The images you publish actually appear in
several topics. Apart from the basic, uncompressed one, you will see a compressed
one or even more. The number of supported transports depends on the plugins
installed in your ROS environment; you will usually have the compressed and
theora transports. You can see this with a simple rostopic call command.

In your code you need the node handle to create the image transport and then the
publisher. In this example we will use a simple image publisher. Please check the
ÀQDO�86%�FDPHUD�GULYHU�IRU�WKH�CameraPublisher usage:

ros::NodeHandle nh;
image_transport::ImageTransport it;
image_transport::Publisher pub_image_raw;

The node handle and the image transport are constructed with the following code
(in the attribute constructors of a class):

nh("~"),
it(nh)

Then, the publisher is created this way, for an image_raw topic, within the node
namespace:

pub_image_raw = it.advertise("image_raw", 1);

Hence, now the frame attribute shown in the previous section can be published
using the following code statement:

pub_image_raw.publish(frame->toImageMsg());

Computer Vision

[�����]

8VLQJ�2SHQ&9�LQ�526
ROS Fuerte comes with one of the latest stable versions of OpenCV; in newer ROS
distributions it simply depends on the Debian package of the OpenCV library
installed in your system. In order to use it in our nodes, include the following
code snippet in your manifest.xml�ÀOH�

<depend package="opencv2"/>

In the CMakeLists.xml�ÀOH�ZH�RQO\�KDYH�WR�SXW�D�OLQH�WR�EXLOG�RXU�QRGH��WKDW�LV��
nothing must be done regarding the OpenCV library.

In our node's .cpp�ÀOH�ZH�LQFOXGH�DQ\�RI�WKH�2SHQ&9�OLEUDULHV�ZH�QHHG��)RU�
example, for the highgui.hpp�ÀOH�ZH�XVH�WKH�IROORZLQJ�VWDWHPHQW�

#include <opencv2/highgui/highgui.hpp>

Now, you can use any of the OpenCV API classes, functions, and many more
code elements, in your code, as a regular. Just use its namespace, cv, and follow
any OpenCV tutorial if you are new to OpenCV. Note that this book is not about
OpenCV, just how to do computer vision inside ROS. Then, compile everything
with rosmake as usual for an ROS package.

9LVXDOL]LQJ�WKH�FDPHUD�LQSXW�LPDJHV
In Chapter 3, Debugging and Visualization, we explained how to visualize any
image published in the ROS framework, using the image_view topic of the
image_view package:

rosrun image_view image_view image:=/camera/image_raw

What is important here is the fact that using the image transport we can select
different topics to see the images, using compressed formats if required. Also,
in the case of stereo vision, as we will see later, we can use rviz to see the point
cloud obtained with the disparity image.

+RZ�WR�FDOLEUDWH�WKH�FDPHUD
Most cameras, especially wide angular ones, exhibit a large distortion. We can model
VXFK�GLVWRUWLRQ�DV�UDGLDO�RU�WDQJHQWLDO�DQG�FRPSXWH�WKH�FRHIÀFLHQWV�RI�WKDW�PRGHO�
using calibration algorithms. The camera calibration algorithms also allow us to
obtain a calibration matrix that contains the focal distance and principal point of the
lens, and hence provides a way to measure distances in meters in the world using
the images acquired. In the case of stereo vision, it is also possible to retrieve depth
information, that is, the distance of the pixels to the camera, as we will see later.
Consequently, we will have 3D information of the world.

Chapter 6

[�����]

The calibration is done by showing several views of a known image named
calibration pattern, which is typically a chessboard. It can also be an array of circles,
or an asymmetric pattern of circles. Note that circles are seen as ellipses by the
cameras for skew views. A detection algorithm obtains the inner corner point of the
cells on the chessboard and uses them to estimate the camera's intrinsic and extrinsic
parameters. In short, the extrinsic parameters are the poses of the camera, or in other
words, the poses of the pattern with regard to the camera, if we left the camera in a
À[HG�SRVLWLRQ��:KDW�ZH�ZDQW�DUH�WKH�LQWULQVLF�SDUDPHWHUV��EHFDXVH�WKH\�GR�QRW�FKDQJH�
and can be used later for the camera at any pose, and allow measuring distances in
the images and correcting the image distortion, that is, rectifying the image.

With our camera driver running, we can use the calibration tool of ROS to calibrate
it. It is important that the camera driver provides CameraInfo messages and has the
camera_info_set�VHUYLFH��ZKLFK�DOORZV�VHWWLQJ�WKH�SDWK�WR�WKH�FDOLEUDWLRQ�UHVXOWV�ÀOH��
Later, this calibration information is always loaded by the image pipeline when using
WKH�FDPHUD��2QH�FDPHUD�GULYHU�WKDW�VDWLVÀHV�WKHVH�SUHUHTXLVLWHV�LV�WKH�camera1394
driver for FireWire cameras. In order to calibrate your FireWire camera, just run the
following command:

roslaunch chapter6_tutorials calibration_firewire_camera_chessboard.launch

This will open a GUI that automatically selects the views of our calibration pattern,
and it provides some bars to inform how each "axis" is covered by the views retrieved.
It comprises of the x and y axes, meaning it shows the patterns close to each extreme
of these axes in the image plane, that is, the horizontal and vertical axis, respectively.
Then, the scale goes from close to far (up to that distance at which the detection works).
Finally, skew requires views of the pattern tilt in both the x and y axes. The three
buttons below these bars are disabled by default, as shown in the following screenshot:

Computer Vision

[�����]

You will see the points detected in the pattern overlay every time the detector can do
it. The views are automatically selected to cover a representative number of different
views, so you can make the bars go green from one side to the other, following the
instructions given in a moment. In theory, two views are enough, but in practice
around 10 are usually needed. In fact, this interface captures even more (30 to 40).
You should avoid fast movements because blurry images are bad for detection. Once
the tool has enough views, it will allow you to calibrate, that is, to start the optimizer
that solves the system of the pinhole camera model given the points detected in the
calibration pattern views.

Then, you can save the calibration data and commit the calibration results to the
camera. For this, it uses the camera_info_set service to commit the calibration
to the camera, so later it is detected automatically by the ROS image pipeline.

For the .launch�ÀOH�SURYLGHG�IRU�WKH�FDOLEUDWLRQ��VLPSO\�XVH�WKH�cameracalibrator.py
ÀOH�RI�WKH�526�SDFNDJH�camera_calibration, using the following node:

 <node pkg="camera_calibration" type="cameracalibrator.py"
 name="cameracalibrator" args="--size 8x6 --square 0.030"
 output="screen">
 <remap from="image" to="camera/image_color" />
 <remap from="camera" to="camera" />
 </node>

It also uses the image pipeline but it is not required. In fact, instead of the image_color
topic, we could use the image_raw one.

Chapter 6

[�����]

Once you have saved the calibration (using the Save�EXWWRQ���D�ÀOH�LV�FUHDWHG�LQ�\RXU�
temp directory. It contains the calibration pattern views used for the calibration. You
FDQ�ÀQG�LW�DW�/tmp/calibrationdata.tar.gz. The ones used for the calibration in the
book, can be found in the calibration directory, with firewire_camera being the
ÀUVW�FDVH�IRU�WKH�)LUH:LUH�FDPHUD��6LPLODUO\��RQ�WKH�WHUPLQDO��WKH�stdout output), you
will see information regarding the views taken and the calibration results. The ones
obtained for the book are in the same folder as the calibration data. The calibration
results can also be consulted in the ost.txt�ÀOH�LQVLGH�WKH�calibrationdata.tar.gz
IROGHU��$Q\ZD\��UHPHPEHU�WKDW�DIWHU�WKH�FRPPLW��WKH�FDOLEUDWLRQ�ÀOH�LV�XSGDWHG�ZLWK�
WKH�FDOLEUDWLRQ�PDWUL[�DQG�WKH�FRHIÀFLHQWV�RI�WKH�GLVWRUWLRQ�PRGHO��$�JRRG�ZD\�RI�GRLQJ�
WKLV�FRQVLVWV�RI�FUHDWLQJ�D�GXPP\�FDOLEUDWLRQ�ÀOH�EHIRUH�WKH�FDOLEUDWLRQ��,Q�RXU�SDFNDJH��
WKDW�ÀOH�LV�DW�calibration/firewire_camera/calibration_firewire_camera.
yaml��ZKLFK�LV�DFFHVVHG�E\�WKH�SDUDPHWHUV�ÀOH�

camera_info_url: package://chapter6_tutorials/calibration/firewire_
camera/calibration_firewire_camera.yaml

1RZ��ZH�FDQ�UXQ�RXU�FDPHUD�DJDLQ�ZLWK�WKH�LPDJH�SLSHOLQH��DQG�WKH�UHFWLÀHG�LPDJHV�
will have the distortion corrected as a clear sign that the camera is calibrated correctly.
We will see this later for the image pipeline.

For more details on the calibration formulas, since ROS uses the Zhang calibration
method implemented in OpenCV, our advice is to consult its documentation.
However, we think it is enough to have the user knowledge provided here.

Finally, you can also play with different calibration patterns using the following
.launch�ÀOHV�IRU�FLUFOHV�DQG�DV\PPHWULF�FLUFOHV��VHH�http://docs.opencv.org/
trunk/_downloads/acircles_pattern.png), meant for FireWire cameras:

roslaunch chapter6_tutorials calibration_firewire_camera_circles.launch

roslaunch chapter6_tutorials calibration_firewire_camera_acircles.launch

You can also use the multiple chessboard patterns for a single calibration, using
patterns of different size. However, we think it is enough and simple to use a single
chessboard pattern printed with good quality. Indeed, for the USB camera driver we
only use that.

In the case of a USB camera driver, we have a more powerful .launch�ÀOH�WKDW�
integrates the camera calibration node. There is also a standalone one like the one
for FireWire cameras, though. Hence, in order to calibrate your camera, just run
the following command:

roslaunch chapter6_tutorials camera.launch calibrate:=true

Computer Vision

[�����]

In the following screenshot you will see the steps of the calibration process in the
GUI, identical to the one with FireWire cameras. That means we have an operating
camera_info_set service:

The preceding screenshot shows the instant when enough views of the pattern have
been acquired, so the calibrate button is enabled because now it is possible to solve the
calibration problem. The following screenshot shows the end of the calibration process
and thus allows saving the calibration data as well as committing it to the camera
FRQÀJXUDWLRQ�ÀOHV�VR�WKDW�ODWHU�ZH�GR�QRW�KDYH�WR�VHW�DQ\WKLQJ�XS�

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 6

[�����]

Stereo calibration
The following section will speak of working with stereo cameras. One option is to
run two monocular camera nodes, but in general it is better to consider the whole
stereo pair as a single sensor, because the images must be synchronized. In ROS
there is no driver for FireWire stereo cameras, but we can use an extension to stereo
provided here:

git clone git://github.com/srv/camera1394stereo.git

However, FireWire stereo pairs are quite expensive. For this reason, we provide a
stereo camera driver for USB cameras. We use the Logitech C120 USB webcam, which
is very cheap. It is also noisy, but we will see that we can do great things with it after
we calibrate it. It is important that in the stereo pair the cameras are similar, but you
can try different cameras as well. Our setup for the cameras is shown in the following
images. You only need two cameras pointing in the same plane.

Computer Vision

[�����]

We have a baseline of approximately 12 cm, which will also be computed in the
stereo calibration process. As you can see, you only need a bar to attach the cameras
to, with zip ties, for example:

A closer and frontal view shows the camera lenses, which can be regulated manually
in focus. Note that you should set it to some appropriate distance (1 to 2 meters used
for the baseline should be good in the most general case):

Now, connect the cameras to your USB slots. It is good practice to connect the left
FDPHUD�ÀUVW�DQG�WKHQ�WKH�ULJKW�RQH��7KLV�ZD\��WKH\�DUH�DVVLJQHG�WKH�/dev/video0
and /dev/video1 devices, or the 1 and 2 if 0 is already taken.

Chapter 6

[�����]

Then, you can test each camera individually, as we would do for a single camera. Some
WRROV�\RX�ZLOO�ÀQG�XVHIXO�DUH�v4l-utils and qv4l2 used in the following manner:

sudo apt-get install v4l-utils qv4l2

You may experience this problem:

libv4l2: error turning on stream: No space left on device

This happens because you must connect each camera to a different USB controller.
Note that some USB slots are managed by the same controller, and hence it cannot
deal with the bandwidth of more than a single camera. If you only have a USB
controller, there are other options you can try. First, try to use a compressed pixel
format, such as MJPG, in both cameras. You can check whether it is supported by
your camera using:

v4l2-ctl -d /dev/video2 --list-formats
ioctl: VIDIOC_ENUM_FMT
Index : 0
Type : Video Capture
Pixel Format: 'YUYV'
Name : YUV 4:2:2 (YUYV)

Index : 1
Type : Video Capture
Pixel Format: 'MJPG' (compressed)
Name : MJPEG

If MJPG is supported, we can use more than one camera in the same USB controller.
Otherwise, with uncompressed pixel formats, we must use different USB controllers,
or reduce the resolution to 320 x 240 or below. Similarly, with the GUI of qv4l2 you
can check this and test your camera. You can also check whether it is possible to set
the desired pixel format. Sometimes this is not possible. Indeed, it did not work for
our USB cameras using the OpenCV set method, so we use a USB slot managed by
a different USB controller.

The USB stereo camera driver that comes with this book is based on the USB camera
driver discussed thus far (in the initial sections). Basically, it extends its support to
camera publishers, which sends the left and right image and the camera info as well.
You can run it and view the images with this command:

roslaunch chapter6_tutorials camera_stereo.launch view:=true

Computer Vision

[�����]

This command should work correctly if you only connect two cameras to your
computer (and it already has a camera integrated), so the cameras' IDs are 1 and 2.
If you need to change them, you must edit the params/camera_stereo/logitech_
c120.yaml�ÀOH��ZKLFK�LV�XVHG�E\�GHIDXOW�LQ�WKH�SUHYLRXV�.launch�ÀOH��DQG�VHW�WKH�
DSSURSULDWH�,'V�LQ�WKHVH�ÀHOGV�

camera_index_left: 1
camera_index_right: 2

This also shows the disparity image of left and right cameras, which will be useful
and discussed later, once the cameras are calibrated and used within the ROS image
pipeline. In order to calibrate, just run the following command:

roslaunch chapter6_tutorials camera_stereo.launch calibrate:=true

You will see this GUI, similar to the one for monocular cameras:

At the time of the preceding screenshot, we have shown enough views to start
the calibration. Note that the calibration pattern must be detected by both cameras
simultaneously to be included for the calibration optimization step. Depending on
the setup this may be quite tricky, so you should put the pattern at the appropriate
distance from the camera. You can see the setup used for the calibration of this book
in the following image:

Chapter 6

[�����]

The calibration is done by the same cameracalibrator.py node as for monocular
cameras. We simply pass the left and right cameras and images, so that the tool
knows we are going to perform a stereo calibration. The following is the node
element in the .launch�ÀOH�

 <node ns="$(arg camera)" name="cameracalibrator"
 pkg="camera_calibration" type="cameracalibrator.py"
 args="--size 8x6 --square 0.030" output="screen">
 <remap from="left" to="left/image_raw"/>
 <remap from="right" to="right/image_raw"/>
 <remap from="left_camera" to="left"/>
 <remap from="right_camera" to="right"/>
 </node>

The result of the calibration is the same as that for monocular cameras, but in this
FDVH�ZH�KDYH�WKH�FDOLEUDWLRQ�ÀOHV�IRU�HDFK�FDPHUD��$FFRUGLQJ�WR�WKH�SDUDPHWHUV�ÀOH�
in params/camera_stereo/logitech_c120.yaml, we have:

camera_info_url_left: package://chapter6_tutorials/calibration/camera_
stereo/${NAME}.yaml
camera_info_url_right: package://chapter6_tutorials/calibration/
camera_stereo/${NAME}.yaml

Computer Vision

[�����]

Here, ${NAME} is the name of the camera, which is resolved to logitech_c120_
left and logitech_c120_right for the left and right camera, respectively. After
WKH�FRPPLW�RI�WKH�FDOLEUDWLRQ��WKHVH�ÀOHV�DUH�XSGDWHG�ZLWK�WKH�FDOLEUDWLRQ�RI�HDFK�
FDPHUD��7KLV�FRQWDLQV�WKH�FDOLEUDWLRQ�PDWUL[��WKH�GLVWRUWLRQ�PRGHO�FRHIÀFLHQWV��DQG�WKH�
UHFWLÀFDWLRQ�DQG�SURMHFWLRQ�PDWUL[��ZKLFK�LQFOXGH�WKH�EDVHOLQH��WKDW�LV��WKH�VHSDUDWLRQ�
between each camera in the x�D[LV�RI�WKH�LPDJH�SODQH��,Q�WKH�SDUDPHWHUV�ÀOH��\RX�FDQ�
also see some values for the properties of the cameras that have been set for indoor
HQYLURQPHQWV�ZLWK�DUWLÀFLDO�OLJKW��7KLV�FDPHUD�KDV�DXWRFRUUHFWLRQ��VR�VRPHWLPHV�WKH�
images may be quite bad, but these values seem to work well in most cases.

7KH�526�LPDJH�SLSHOLQH
The ROS image pipeline is run with the image_proc package. It provides all the
conversion utilities to obtain monochrome and color images from the RAW images
acquired from the camera. In the case of FireWire cameras, which may use a Bayer
pattern to code the images (actually in the sensor itself), it de-Bayers them to obtain
the color images. Once you have calibrated your camera, the image pipeline takes
the CameraInfo messages, which contain the de-Bayered pattern information, and
UHFWLÀHV�\RXU�LPDJHV��+HUH��UHFWLÀHV�PHDQV�WR�XQGLVWRUW�WKH�LPDJHV��VR�LW�WDNHV�WKH�
FRHIÀFLHQWV�RI�WKH�GLVWRUWLRQ�PRGHO�WR�FRUUHFW�WKH�UDGLDO�DQG�WDQJHQWLDO�GLVWRUWLRQ�

As a result, you will see more topics for your camera in its namespace. In the following
screenshots, you will see the image_raw, image_mono, and image_color topics that
show the RAW, monochrome, and color images, respectively:

Chapter 6

[�����]

The monochrome image in the following screenshot is, in this case, the same as the
RAW one, but the sensors with a Bayer pattern will be seen in the RAW image:

Finally, in the /image_color topic we have the image in color. Note that the process
of conversion does not have to be RAW, monochrome, and color, since indeed many
cameras output the color images directly. Therefore, the RAW and color images are
the same, and the monochrome one is obtained by desaturating the colored one:

Computer Vision

[�����]

7KH�UHFWLÀHG�LPDJHV�DUH�SURYLGHG�LQ�PRQRFKURPH�DQG�FRORU��LQ�WKH�WRSLFV�image_rect
and image_rect_color. In the following screenshot we compared the uncalibrated
GLVWRUWHG�5$:�LPDJHV�ZLWK�WKH�UHFWLÀHG�RQHV��<RX�FDQ�VHH�WKH�FRUUHFWLRQ�EHFDXVH�
the patterns shown in the images from the screenshot have straight lines only in the
UHFWLÀHG�LPDJHV��SDUWLFXODUO\�LQ�WKH�DUHDV�IDU�IURP�WKH�FHQWHU��SULQFLSDO�SRLQW��RI�WKH�
image (sensor):

You can see all the topics available with rostopic list or rxgraph, which include
the image transports as well.

You can view the image_raw topic of a monocular camera directly using the
following command:

roslaunch chapter6_tutorials camera.launch view:=true

Chapter 6

[�����]

It can be changed to see other topics, but for these cameras, the RAW images are
DOUHDG\�LQ�FRORU��+RZHYHU��WR�VHH�WKH�UHFWLÀHG�RQHV��XVH�WKH�image_rect_color topic,
with image_view, or change the .launch�ÀOH��7KH�image_proc node is used to make
all these topics available, just with the following code in the .launch�ÀOH�

<node ns="$(arg camera)" pkg="image_proc" type="image_proc"
name="image_proc"/>

,PDJH�SLSHOLQH�IRU�VWHUHR�FDPHUDV
In the case of stereo cameras, we have the same for left and right cameras.
+RZHYHU��WKHUH�DUH�YLVXDOL]DWLRQ�WRROV�VSHFLÀF�IRU�WKHP��EHFDXVH�ZH�FDQ�XVH�the left
and right images to compute and see the disparity image. An algorithm uses the stereo
calibration and the texture of both images to estimate the depth of each pixel, which is
the disparity image. To obtain good results, we must tune the algorithm that computes
such an image. In the following screenshot we see the left, right, and disparity images,
as well as reconfiguire_gui for stereo_image_proc, which is the node that builds
the image pipeline for stereo images. In the .launch�ÀOH�ZH�RQO\�QHHG�

 <node ns="$(arg camera)" pkg="stereo_image_proc"
 type="stereo_image_proc"
 name="stereo_image_proc" output="screen">
 <rosparam file="$(arg params_disparity)"/>
 </node>

It requires the disparity parameters, which can be set with reconfigure_gui as in the
following screenshot, and saved with rosparam dump /stereo/stereo_image_proc:

Computer Vision

[�����]

We have good values for the environment used in this book demo in the parameters
ÀOH�params/camera_stereo/disparity.yaml:

{correlation_window_size: 33, disparity_range: 32, min_disparity: 25,
prefilter_cap: 5,
 prefilter_size: 15, speckle_range: 15, speckle_size: 50, texture_
threshold: 1000,
 uniqueness_ratio: 5.0}

However, these parameters depend a lot on the calibration quality and the
environment. You should adjust it to your experiments. It takes time and it is quite
tricky, but you can follow the guidelines given on the ROS page at http://www.ros.
org/wiki/stereo_image_proc/Tutorials/ChoosingGoodStereoParameters.

Basically, you start by setting a disparity_range value that allows enough blobs.
You also have to set min_disparity, so you see areas covering the whole range
RI�GHSWKV��IURP�UHG�WR�EOXH�SXUSOH���7KHQ��\RX�FDQ�ÀQH�WXQH�WKH�UHVXOW�VHWWLQJ�
speckle_size to remove small noisy blobs. Also, modify uniqueness_ratio
and texture_threshold to have larger blobs. The correlation_window_size
parameter is also important since it affects the detection of initial blobs.

,I�LW�EHFRPHV�YHU\�GLIÀFXOW�WR�REWDLQ�JRRG�UHVXOWV��\RX�PD\�KDYH�WR�UHFDOLEUDWH�RU�
use better cameras for your environment and lighting conditions. You can also try
in another environment or with more light. It is important that you have texture in
WKH�HQYLURQPHQW��IRU�H[DPSOH��IURP�D�ÁDW�ZKLWH�ZDOO�\RX�FDQQRW�ÀQG�DQ\�GLVSDULW\��
Also, depending on the baseline, you cannot retrieve depth information very close
to the camera. Similarly, for long distances from the camera, the depth estimation
is less accurate. In conclusion, the distance of the baseline depends on the target
application, and it is proportional to the depth that we want to measure. We use
a value of 12 cm that is good for 1 to 2 meters, because later we will try visual
odometry, which is usually performed at relatively large distances (> 1 meter).
However, with this setup, we only have depth information one meter apart from
the cameras. However, with a smaller baseline, we can obtain depth information
from closer objects. This is bad for navigation because we lose far away resolution,
but it is good for perception and grasping.

Regarding calibration problems, you can check your calibration results with the
cameracheck.py node, which is integrated in both the monocular and stereo camera
.launch�ÀOHV�

roslaunch chapter6_tutorials camera.launch view:=true check:=true

roslaunch chapter6_tutorials camera_stereo.launch view:=true check:=true

Chapter 6

[�����]

For the monocular camera, our calibration yields this RMS error (see more in
calibration/camera/cameracheck-stdout.log):

Linearity RMS Error: 1.319 Pixels Reprojection RMS Error: 1.278
Pixels

Linearity RMS Error: 1.542 Pixels Reprojection RMS Error: 1.368
Pixels

Linearity RMS Error: 1.437 Pixels Reprojection RMS Error: 1.112
Pixels

Linearity RMS Error: 1.455 Pixels Reprojection RMS Error: 1.035
Pixels

Linearity RMS Error: 2.210 Pixels Reprojection RMS Error: 1.584
Pixels

Linearity RMS Error: 2.604 Pixels Reprojection RMS Error: 2.286
Pixels

Linearity RMS Error: 0.611 Pixels Reprojection RMS Error: 0.349
Pixels

For the stereo camera, we have the epipolar error and the estimation of the cell size
of the calibration pattern (see more in calibration/camera_stereo/cameracheck-
stdout.log):

epipolar error: 0.738753 pixels dimension: 0.033301 m

epipolar error: 1.145886 pixels dimension: 0.033356 m

epipolar error: 1.810118 pixels dimension: 0.033636 m

epipolar error: 2.071419 pixels dimension: 0.033772 m

epipolar error: 2.193602 pixels dimension: 0.033635 m

epipolar error: 2.822543 pixels dimension: 0.033535 m

To obtain this result, you only have to show the calibration pattern to the camera(s).
This is the reason we also pass view:=true to the .launch�ÀOHV��$Q�506�HUURU�JUHDWHU�
than two pixels is quite large; we have something around it, but you will recall that
these are very low-cost cameras. Something below one pixel error is desirable. For the
stereo pair, the epipolar error should also be lower than a pixel; in our case, it is still
quite large (usually greater than three pixels), but we can still do many things. Indeed,
the disparity image is just a representation of the depth of each pixel, shown with the
stereo_view node. We also have a 3D point cloud that we can see texturized in rviz.
We will see this for the following demos, doing visual odometry.

Computer Vision

[�����]

526�SDFNDJHV�XVHIXO�IRU�FRPSXWHU�
vision tasks
The great advantage of doing computer vision in ROS is the fact that we do not
have to reinvent the wheel. A lot of third-party software is available and we can also
connect our vision stuff to the real robots or do some simulations. Here, we are going
to enumerate some interesting computer vision tools for some of the most common
visual tasks, but we will only explain one of them in detail later on (including all the
steps to set it up). That is the visual odometry, but other tasks are also easy to install
and start playing with. Just follow the tutorials or manuals in the links provided in
the following list:

�� Visual Servoing (also known as Vision-based Robot Control): This is a
technique that uses feedback information obtained from a vision sensor
to control the motion of a robot, typically an arm used for grasping. In
ROS we have a wrapper of the Visual Servoing Platform (ViSP) software
(http://www.irisa.fr/lagadic/visp/visp.html and http://www.ros.
org/wiki/vision_visp). ViSP is a complete cross-platform library that
allows prototyping and developing applications in visual tracking and
visual servoing. The ROS wrapper provides a tracker that can be run with
the node visp_tracker (the moving edge tracker), as well as visp_auto_
tracker (the model-based tracker). It also helps to calibrate the camera and
perform the hand-to-eye calibration, which is crucial for visual servoing in
grasping tasks.

�� Augmented Reality (AR): An Augmented Reality application involves the
overlay of virtual imagery on the real world. A well-known library for this
purpose is ARToolkit (http://www.hitl.washington.edu/artoolkit/).
The main problem in this application is the tracking of the user viewpoint,
so the virtual imagery is drawn in the viewpoint where the user is looking
in the real world. ARToolkit video tracking libraries calculate the real camera
position and orientation relative to physical markers in real time. In ROS we
have a wrapper named ar_pose (http://www.ros.org/wiki/ar_pose). It
allows us to track single or multiple markers at places where we can render
our virtual imagery (for example, a 3D model).

Chapter 6

[�����]

�� Perception and object recognition: The most basic perception and object
recognition is possible with OpenCV libraries. However, it is worth
mentioning a tool called RoboEarth (http://www.roboearth.org), which
allows us to detect and build 3D models of physical objects and store them in
a global database accessible to any robot (or human) worldwide. The models
stored can be 2D or 3D, and can be used to recognize similar objects and
their viewpoint, that is, to identify what the camera/robot is watching. The
RoboEarth project is integrated in ROS, and many tutorials are provided to
have a running system (http://www.ros.org/wiki/roboearth).

�� Visual odometry: A visual odometry algorithm uses the images of the
environment to track some features and estimate the robot movement,
assuming a static environment. It can solve the 6 DoF pose of the robot with
a monocular or stereo system, but it may require additional information
in the monocular case. There are two main libraries for visual odometry:
libviso2 (http://www.cvlibs.net/software/libviso2.html) and
libfovis (http://www.ros.org/wiki/fovis_ros), both of them with
wrappers for ROS. The wrappers just expose these libraries to ROS. They
are the stacks viso2 and fovis, respectively.
In the following section we will see how to perform visual odometry with our
homemade stereo camera using the viso2_ros node of viso2. The libviso2
library allows us to perform monocular and stereo visual odometry. However,
IRU�PRQRFXODU�RGRPHWU\�ZH�DOVR�QHHG�WKH�SLWFK�DQG�KHDGLQJ�IRU�WKH�ÁRRU�
plane estimation. You can try the monocular case with one camera and an
IMU (see Chapter 4, Using Sensors and Actuators with ROS), but you will always
have better results with a good stereo pair, correctly calibrated, as seen thus
far in this chapter. Finally, libfovis does not allow the monocular case, but
it supports RGB-D cameras, such as the Kinect sensor (see Chapter 4, Using

Sensors and Actuators with ROS). Regarding the stereo case, it is possible to try
both libraries and see which one works better in your case. Here, we provide
you with a step-by-step tutorial to install and run viso2 in ROS.

3HUIRUPLQJ�YLVXDO�RGRPHWU\�ZLWK�YLVR�
The current version of the viso2 ROS wrapper builds in both ROS Fuerte and
Groovy versions. However, for both of them, we must use the catkin building
system. In this book we have seen the rosmake classical building system, so we
provide detailed instructions for the catkin installation of viso2 here. Run all
the following commands in sequence:

cd ~

mkdir ros

Computer Vision

[�����]

cd ros
mkdir -p caktin_ws/src
cd caktin_ws/src/
catkin_init_workspace

Now that we have created our catkin workspace, we proceed to install viso2.
We are going to do it with wstool, which integrates the downloading command
in the system. This means that instead we could simply run a git clone git://
github.com/srv/viso2.git, which clones the repository of the viso2 wrapper.
:H�ÀUVW�LQVWDOO�wstool and download viso2 with:

sudo apt-get install python-wstool
wstool init
wstool set viso2 --git git://github.com/srv/viso2.git
wstool update

With catkin, we must select the environment variables we want to use most
frequently. We want viso2 to be installed system-wide, so we run:

source /opt/ros/groovy/setup.bash

cd ..

catkin_make

Now, with viso2 installed, we change to the developing environment variables
and can run the viso2_ros nodes, such as stereo_odometer, which is the one we
are going to use here. But before that, we need to publish the frame transformation
between our camera and the robot or its base link. The stereo camera driver is already
prepared for that, but we will explain how it is done in the following sections.

source devel/setup.bash

&DPHUD�SRVH�FDOLEUDWLRQ
In order to set the transformation between the different frames in our robot system,
we must publish the tf message of such transforms. The most appropriate and
generic way to do this consists of using the camera_pose stack. We use the latest
version from this repository available at: https://github.com/jbohren-forks/
camera_pose, because the one in ROS has some problems (for example, it fails
when you run it in ROS Fuerte, since the .launch�ÀOHV�VHHP�WR�EH�REVROHWH���7KLV�
stack offers a series of .launch�ÀOHV�WKDW�FDOLEUDWHV�WKH�FDPHUD�SRVHV�ZLWK�UHJDUG�WR�
each other. It comes with .launch�ÀOHV�IRU�WZR��WKUHH��IRXU��RU�PRUH�FDPHUDV��,Q�RXU�
case we only have two cameras (stereo), so we proceed this way. First, we extend
our camera_stereo.launch�ÀOH�ZLWK�WKH�calibrate_pose argument that calls the
caliration_tf_publisher.launch�ÀOH�IURP�camera_pose:

Chapter 6

[�����]

<include file="$(find camera_pose_calibration)/blocks/calibration_tf_
publisher.launch">
 <arg name="cache_file" value="/tmp/camera_pose_calibration_cache.
bag"/>
</include>

Now, run the following command:

roslaunch chapter6_tutorials camera_stereo.launch calibrate_pose:=true

And the calibration_tf_publisher�ÀOH�ZLOO�SXEOLVK�WKH�IUDPH�WUDQVIRUPV��tf) as
soon as the calibration has been done correctly. The calibration is similar to the one
ZH�KDYH�VHHQ�WKXV�IDU��EXW�XVLQJ�WKH�VSHFLÀF�WRROV�IURP�camera_pose, which are run
with the following command:

roslaunch camera_pose_calibration calibrate_2_camera.launch camera1_ns:=/
stereo/left camera2_ns:=/stereo/right checker_rows:=6 checker_cols:=8
checker_size:=0.03

With this call, we can use the same calibration pattern we used with our previous
calibration tools. However, it requires the images to be static; some bars move from
one side to another of the image and turn green when the images in all cameras have
EHHQ�VWDWLF�IRU�D�VXIÀFLHQW�SHULRG�RI�WLPH��:LWK�RXU�QRLV\�FDPHUDV��ZH�QHHG�D�VXSSRUW�
for the calibration pattern, a tripod or a panel, as shown in the following image:

Computer Vision

[�����]

The following image shows a tripod used simply to support the calibration pattern.
7KLV�LV�LPSRUWDQW��VLQFH�DW�OHDVW�WKH�FDPHUD�RU�WKH�FDOLEUDWLRQ�SDWWHUQ�PXVW�EH�À[HG�WR�
a certain pose:

Then, we can calibrate as shown in the following screenshot:

Also, this creates a tf frame transform from the left to the right camera. However,
although this is the most appropriate way to perform the camera pose calibration,
we are going to use a simple approach that is enough for a stereo pair, and is also
required by viso2, since it just needs the frame of the whole stereo pair as a single
unit/sensor. Internally, it uses the stereo calibration results of cameracalibrator.
py to retrieve the baseline.

Chapter 6

[�����]

We have a .launch�ÀOH�WKDW�XVHV�static_transform_publisher for the camera link
to the base link (for example, robot base) and another one from the camera link to
the optical camera link, because the optical one requires a rotation. Recall that the
camera frame has the z axis pointing forward from the camera optical lens, while
the other frames (for example, the world, navigation, or odometry) have the z axis
pointing up. This .launch�ÀOH�LV�LQ�launch/frames/stereo_frames.launch:

<launch>
 <arg name="camera" default="stereo" />

 <arg name="baseline/2" value="0.06"/>
 <arg name="optical_translation" value="0 -$(arg baseline/2) 0"/>

 <arg name="pi/2" value="1.5707963267948966"/>
 <arg name="optical_rotation" value="-$(arg pi/2) 0 -$(arg pi/2)"/>

 <node pkg="tf" type="static_transform_publisher" name="$(arg
camera)_link"
 args="0 0 0.1 0 0 0 /base_link /$(arg camera) 100"/>
 <node pkg="tf" type="static_transform_publisher" name="$(arg
camera)_optical_link"
 args="$(arg optical_translation) $(arg optical_rotation)
/$(arg camera) /$(arg camera)_optical 100"/>
</launch>

7KLV�ÀOH�LV�LQFOXGHG�LQ�RXU�VWHUHR�FDPHUD�ODXQFK�ÀOH�DQG�SXEOLVKHV�WKHVH�VWDWLF�
frame transforms. Hence, we only have to run the following command to have
it publishing them:

roslaunch chapter6_tutorials camera_stereo.launch tf:=true

Then, you can check whether they are being published in rviz with the tf element,
as we will see in the following section.

Computer Vision

[�����]

5XQQLQJ�WKH�YLVR��RQOLQH�GHPR
At this point, we are reading to run the visual odometry algorithm. Our stereo pair
cameras are calibrated, their frame has the appropriate name for viso2 (ending with
_optical), and the tf parameter for the camera and optical frames are published.
We do not need anything else. But before using our own stereo pair, we are going to
test viso2�ZLWK�WKH�EDJ�ÀOHV�SURYLGHG�DW�ftp://opt.uib.es/bagfiles/viso2_ros.
Just run bag/viso2_demo/download_amphoras_pool_bag_files.sh to obtain all
WKH�EDJ�ÀOHV��LW�LV�DERXW���*%���7KHQ��ZH�KDYH�D�.launch�ÀOH�IRU�ERWK�WKH�PRQRFXODU�
and stereo odometer in launch/visual_odometry. In order to run the stereo demo
we have a .launch�ÀOH�RQ�WRS�WKDW�SOD\V�WKH�EDJ�ÀOHV�DQG�DOVR�DOORZV�XV�WR�LQVSHFW�
and visualize its contents. For instance, to calibrate the disparity image algorithm,
run the following command:

roslaunch chapter6_tutorials viso2_demo.launch config_disparity:=true
view:=true

You will see the left, right, and disparity images, and the reconfigure_gui interface
WR�FRQÀJXUH�WKH�GLVSDULW\�DOJRULWKP��<RX�QHHG�WR�GR�WKLV�WXQLQJ�EHFDXVH�WKH�EDJ�
ÀOHV�RQO\�KDYH�WKH�5$:�LPDJHV��:H�KDYH�IRXQG�VRPH�JRRG�SDUDPHWHUV�WKDW�DUH�LQ�
params/viso2_demo/disparity.yaml. In the following screenshot you can see the
results obtained with them, where you can clearly appreciate the depth of the rocks
in the stereo images:

Chapter 6

[�����]

To run the stereo odometry and see the result in rviz, run the following command:

roslaunch chapter6_tutorials viso2_demo.launch odometry:=true rviz:=true

Note that we provide DQ�DGHTXDWH�FRQÀJXUDWLRQ�IRU�rviz in params/viso2_demo/
rviz.cfg��ZKLFK�LV�DXWRPDWLFDOO\�ORDGHG�E\�WKH�ODXQFK�ÀOH��7KH�IROORZLQJ�WKUHH�
images show different instants of the texturized 3D point cloud (of the camera) and
the /odom and /stereo_optical frames that show the camera pose estimate of the
stereo odometer. The third image has a decay time of 3 seconds for the point cloud,
so we can see how the points overlay over time. This way, with good images and a
good odometry, we can even see a map drawn in rviz:

Computer Vision

[�����]

In the following screenshot we see a closer view at a later time, where we appreciate
a good reconstruction, although there is some drift in the orientation (the inclination
of the 3D reconstruction, which should be almost horizontal):

Finally, in the following image we have another view of the 3D reconstruction using
the visual odometry:

Chapter 6

[�����]

5XQQLQJ�YLVR��ZLWK�RXU�ORZ�FRVW�VWHUHR�FDPHUD
Finally, we can do the same as viso2_demo with our own stereo pair. We only have
to run the following command to run the stereo odometry and see the results in rviz
(not that the frame transforms (tf) are published by default):

roslaunch chapter6_tutorials camera_stereo.launch odometry:=true
rviz:=true

The following screenshot shows an example of the visual odometry system running for
our low-cost stereo camera. If you move the camera, you should see the /odom frame
moving. If the calibration is bad or the cameras are very noisy, the odometer may get
lost, which is relayed to you through a warning message on the terminal. In that case,
you should look for better cameras or recalibrate them to see whether better results are
obtained. You will also have to look for better parameters for the disparity algorithm:

Computer Vision

[�����]

6XPPDU\
In this chapter we have given an overview of the computer vision tools provided
by ROS. We started by showing how to connect and run several types of cameras,
particularly FireWire and the USB ones. The basic functionality to change their
parameters is presented, so now you can adjust some parameters to obtain images
of good quality. Additionally, we provided a complete USB camera driver example.

Then, we moved to the camera calibration topic. With this you have learned how
easy it is to calibrate a camera. The importance of calibration is the ability to correct
the distortion of wide angle cameras, particularly cheap ones. Also, the calibration
matrix allows you to perform many computer vision tasks, such as visual odometry
or perception.

We have shown how to work with stereo vision in ROS, and how to set up an easy
solution with two inexpensive webcams. We have also explained the image pipeline
and several APIs that work with computer vision in ROS, such as cv_bridge,
ImageTransport, and the integration of OpenCV within ROS packages.

Finally, we enumerated some useful tasks or topics in computer vision that are
supported by some tools that are developed in ROS. In particular, we illustrated
the example of visual odometry using the viso2 library. We showed an example
with some data recorded with a high quality camera and also with the inexpensive
stereo pair proposed. Therefore, after reading and running the code in this chapter,
you will have started with computer vision and you will now be able to perform
ground-breaking stuff in minutes.

Navigation Stack –
Robot Setups

In the previous chapters we have seen how to create our robot, mount some sensors
and actuators, and move it through the virtual world using a joystick or the keyboard.
Now, in this chapter, you will learn something that is probably one of the most
powerful features in ROS, something that will let you move your robot autonomously.

Thanks to the community and the shared code, ROS has many algorithms that can be
used for navigation.

First of all, in�WKLV�FKDSWHU��\RX�ZLOO�OHDUQ�DOO�WKH�QHFHVVDU\�ZD\V�WR�FRQÀJXUH�WKH�
QDYLJDWLRQ�VWDFN�ZLWK�\RXU�URERW��,Q�WKH�QH[W�FKDSWHU��\RX�ZLOO�OHDUQ�WR�FRQÀJXUH�
DQG�ODXQFK�WKH�QDYLJDWLRQ�VWDFN�RQ�WKH�VLPXODWHG�URERW��JLYLQJ�JRDOV�DQG�FRQÀJXULQJ�
some parameters to get the best results. In particular, we will cover the following
items in this chapter:

�� Introduction to the navigation stacks and their powerful capabilities—clearly
one of the greatest pieces of software that comes with ROS.

�� The TF is explained in order to show how to transform from the frame of one
physical element to the other; for example, the data received using a sensor
or the command for the desired position of an actuator.

�� We will see how to create a laser driver or simulate it.
�� We will learn how the odometry is computed and published, and how

Gazebo provides it.
�� A base controller will be presented, including a detailed description of how

to create one for your robot.

Navigation Stack – Robot Setups

[�����]

�� We will see how to execute SLAM with ROS. That is, we will show you
how you can build a map from the environment with your robot as it
moves through it.

�� Finally, you will be able to localize your robot in the map using the
localization algorithms of the navigation stack.

The navigation stack in ROS
In order to understand the navigation stack, you should think of it as a set of
algorithms that use the sensors of the robot and the odometry, and you can control
the robot using a standard message. It can move your robot without problems
(for example, without crashing or getting stuck in some location, or getting lost)
to another position.

You would assume that this stack can be easily used with any robot. This is almost
WUXH��EXW�LW�LV�QHFHVVDU\�WR�WXQH�VRPH�FRQÀJXUDWLRQ�ÀOHV�DQG�ZULWH�VRPH�QRGHV�WR�XVH�
the stack.

The robot must satisfy some requirements before it uses the navigation stack:

�� The navigation stack can only handle a differential drive and holonomic-
wheeled robots. The shape of the robot must be either a square or a rectangle.
However, it can also do certain things with biped robots, such as robot
localization, as long as the robot does not move sideways.

�� It requires that the robot publishes information about the relationships
between all the joints and sensors' position.

�� The robot must send messages with linear and angular velocities.
�� A planar laser must be on the robot to create the map and localization.

Alternatively, you can generate something equivalent to several lasers or
a sonar, or you can project the values to the ground if they are mounted
in another place on the robot.

The following diagram shows you how the navigation stacks are organized. You can
see three groups of boxes with colors (gray and white) and dotted lines. The plain
white boxes indicate those stacks that are provided by ROS, and they have all the
nodes to make your robot really autonomous:

Chapter 7

[�����]

In the following sections, we will see how to create the parts marked in gray
in the diagram. These parts depend on the platform used; this means that it is
necessary to write code to adapt the platform to be used in ROS and to be used
by the navigation stack.

&UHDWLQJ�WUDQVIRUPV
The navigation stack needs to know the position of the sensors, wheels, and joints.

To do that, we use the TF (which stands for Transform Frames) software library.
It manages a transform tree. You could do this with mathematics, but if you have
a lot of frames to calculate, it will be a bit complicated and messy.

Thanks to TF, we can add more sensors and parts to the robot, and the TF will
handle all the relations for us.

If we put the laser 10 cm backwards and 20 cm above with regard to the origin
of the coordinates of base_link, we would need to add a new frame to the
transformation tree with these offsets.

Once inserted and created, we could easily know the position of the laser with
regard to the base_link value or the wheels. The only thing we need to do is
call the TF library and get the transformation.

Navigation Stack – Robot Setups

[�����]

Creating a broadcaster
Let's test�LW�ZLWK�D�VLPSOH�FRGH��&UHDWH�D�QHZ�ÀOH�LQ�chapter7_tutorials/src with
the name tf_broadcaster.cpp, and put the following code inside it:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>

int main(int argc, char** argv){
 ros::init(argc, argv, "robot_tf_publisher");
 ros::NodeHandle n;

 ros::Rate r(100);

 tf::TransformBroadcaster broadcaster;

 while(n.ok()){
 broadcaster.sendTransform(
 tf::StampedTransform(
 tf::Transform(tf::Quaternion(0, 0, 0, 1), tf::Vector3(0.1,
0.0, 0.2)),
 ros::Time::now(),"base_link", "base_laser"));
 r.sleep();
 }
}

Remember to add the following line in your CMakelist.txt�ÀOH�WR�FUHDWH�WKH�
new executable:

rosbuild_add_executable(tf_broadcaster src/tf_broadcaster.cpp)

And we also create another node that will use the transform, and it will give us the
position of a point of a sensor with regard to the center of base_link (our robot).

Creating a listener
Create a QHZ�ÀOH�LQ�chapter7_tutorials/src with the name tf_listener.cpp
and input the following code:

#include <ros/ros.h>
#include <geometry_msgs/PointStamped.h>
#include <tf/transform_listener.h>

void transformPoint(const tf::TransformListener& listener){
 //we'll create a point in the base_laser frame that we'd like to
transform to the base_link frame
 geometry_msgs::PointStamped laser_point;
 laser_point.header.frame_id = "base_laser";

Chapter 7

[�����]

 //we'll just use the most recent transform available for our simple
example
 laser_point.header.stamp = ros::Time();

 //just an arbitrary point in space
 laser_point.point.x = 1.0;
 laser_point.point.y = 2.0;
 laser_point.point.z = 0.0;

 geometry_msgs::PointStamped base_point;
 listener.transformPoint("base_link", laser_point, base_point);

 ROS_INFO("base_laser: (%.2f, %.2f. %.2f) -----> base_link: (%.2f,
%.2f, %.2f) at time %.2f",
 laser_point.point.x, laser_point.point.y, laser_point.point.z,
 base_point.point.x, base_point.point.y, base_point.point.z,
base_point.header.stamp.toSec());

 ROS_ERROR("Received an exception trying to transform a point from
\"base_laser\" to \"base_link\": %s", ex.what());

}

int main(int argc, char** argv){
 ros::init(argc, argv, "robot_tf_listener");
 ros::NodeHandle n;

 tf::TransformListener listener(ros::Duration(10));

 //we'll transform a point once every second
 ros::Timer timer = n.createTimer(ros::Duration(1.0),
boost::bind(&transformPoint, boost::ref(listener)));

 ros::spin();

}

Remember to add the line in the CMakeList.txt�ÀOH�WR�FUHDWH�WKH�H[HFXWDEOH�

Compile the package and run both the nodes using the following commands:

$ rosmake chapter7_tutorials
$ rosrun chapter7_tutorials tf_broadcaster
$ rosrun chapter7_tutorials tf_listener

Then you will see the following message:

[INFO] [1368521854.336910465]: base_laser: (1.00, 2.00. 0.00) ----->
base_link: (1.10, 2.00, 0.20) at time 1368521854.33

Navigation Stack – Robot Setups

[�����]

[INFO] [1368521855.336347545]: base_laser: (1.00, 2.00. 0.00) ----->
base_link: (1.10, 2.00, 0.20) at time 1368521855.33

This means that the point that you published on the node, with the position
(1.00, 2.00, 0.00) relative to base_laser, has the position (1.10, 2.00, 0.20) relative
to base_link.

As you can see, the tf library performs all the mathematics for you to get the
coordinates of a point or the position of a joint relative to another point.

$�WUDQVIRUP�WUHH�GHÀQHV�RIIVHWV�LQ�WHUPV�RI�ERWK�WUDQVODWLRQ�DQG�URWDWLRQ�EHWZHHQ�
different coordinate frames.

Let us see an example to help you understand this. In our robot model used in
Chapter 5, 3D Modeling and Simulation, we are going to add another laser, say,
on the back of the robot (base_link):

The system had to know the position of the new laser to detect collisions, such as
the one between wheels and walls. With the TF tree, this is very simple to do and
maintain and is also scalable. Thanks to tf, we can add more sensors and parts, and
the tf library will handle all the relations for us. All the sensors and joints must be
FRUUHFWO\�FRQÀJXUHG�RQ�tf to permit the navigation stack to move the robot without
problems, and to exactly know where each one of their components is.

%HIRUH�VWDUWLQJ�WR�ZULWH�WKH�FRGH�WR�FRQÀJXUH�HDFK�FRPSRQHQW��NHHS�LQ�PLQG�WKDW�
\RX�KDYH�WKH�JHRPHWU\�RI�WKH�URERW�VSHFLÀHG�LQ�WKH�85')�ÀOH��6R��IRU�WKLV�UHDVRQ��
LW�LV�QRW�QHFHVVDU\�WR�FRQÀJXUH�WKH�URERW�DJDLQ��3HUKDSV�\RX�GR�QRW�NQRZ�LW��EXW�\RX�
have been using the robot_state_publisher package to publish the transform tree
of your robot. In Chapter 5, 3D Modeling and Simulation��ZH�XVHG�LW�IRU�WKH�ÀUVW�WLPH��
WKHUHIRUH��\RX�GR�KDYH�WKH�URERW�FRQÀJXUHG�WR�EH�XVHG�ZLWK�WKH�QDYLJDWLRQ�VWDFN�

Chapter 7

[�����]

:DWFKLQJ�WKH�WUDQVIRUPDWLRQ�WUHH
If you want to see the transformation tree of your robot, use the following command:

$ roslaunch chapter7_tutorials gazebo_map_robot.launch model:="`rospack
find chapter7_tutorials`/urdf/robot1_base_04.xacro"

$ rosrun tf view_frames

The resultant frame is depicted as follows:

And now, if you run tf_broadcaster and run the rosrun tf view_frames
command again, you will see the frame that you have created by code:

$ rosrun chapter7_tutorials tf_broadcaster

$ rosrun tf view_frames

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Navigation Stack – Robot Setups

[�����]

The resultant frame is depicted as follows:

3XEOLVKLQJ�VHQVRU�LQIRUPDWLRQ
Your robot can have a lot of sensors to see the world; you can program a lot of nodes
to take these data and do something, but the navigation stack is prepared only to
use the planar laser's sensor. So, your sensor must publish the data with one of these
types: sensor_msgs/LaserScan or sensor_msgs/PointCloud.

We are going to use the laser located in front of the robot to navigate in Gazebo.
Remember that this laser is simulated on Gazebo, and it publishes data on the
base_scan/scan frame.

,Q�RXU�FDVH��ZH�GR�QRW�QHHG�WR�FRQÀJXUH�DQ\WKLQJ�RI�RXU�ODVHU�WR�XVH�LW�RQ�WKH�
navigation stack. This is because we have tf�FRQÀJXUHG�LQ�WKH�.urdf�ÀOH��DQG�
the laser is publishing data with the correct type.

If you use a real laser, ROS might have a driver for it. Indeed, in Chapter 4, Using

Sensors and Actuators with ROS, you learned how to connect the Hokuyo laser to
ROS. Anyway, if you are using a laser that has no driver on ROS and want to write
a node to publish the data with the sensor_msgs/LaserScan sensor, you have an
example template to do it, which is shown in the following section.

%XW�ÀUVW��UHPHPEHU�WKH�VWUXFWXUH�RI�WKH�PHVVDJH�sensor_msgs/LaserScan. Use the
following command:

$ rosmsg show sensor_msgs/LaserScan

std_msgs/Header header
 uint32 seq
 time stamp

Chapter 7

[�����]

 string frame_id

float32 angle_min

float32 angle_max

float32 angle_increment

float32 time_increment

float32 scan_time

float32 range_min

float32 range_max

float32[] ranges

float32[] intensities

Creating the laser node
Now we�ZLOO�FUHDWH�D�QHZ�ÀOH�LQ�chapter7_tutorials/src with the name laser.cpp
and put the following code in it:

#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>

int main(int argc, char** argv){
 ros::init(argc, argv, "laser_scan_publisher");

 ros::NodeHandle n;
 ros::Publisher scan_pub = n.advertise<sensor_
msgs::LaserScan>("scan", 50);

 unsigned int num_readings = 100;
 double laser_frequency = 40;
 double ranges[num_readings];
 double intensities[num_readings];

 int count = 0;
 ros::Rate r(1.0);
 while(n.ok()){
 //generate some fake data for our laser scan
 for(unsigned int i = 0; i < num_readings; ++i){
 ranges[i] = count;
 intensities[i] = 100 + count;
 }
 ros::Time scan_time = ros::Time::now();

Navigation Stack – Robot Setups

[�����]

 //populate the LaserScan message
 sensor_msgs::LaserScan scan;
 scan.header.stamp = scan_time;
 scan.header.frame_id = "base_link";
 scan.angle_min = -1.57;
 scan.angle_max = 1.57;
 scan.angle_increment = 3.14 / num_readings;
 scan.time_increment = (1 / laser_frequency) / (num_readings);
 scan.range_min = 0.0;
 scan.range_max = 100.0;

 scan.ranges.resize(num_readings);
 scan.intensities.resize(num_readings);
 for(unsigned int i = 0; i < num_readings; ++i){
 scan.ranges[i] = ranges[i];
 scan.intensities[i] = intensities[i];
 }

 scan_pub.publish(scan);
 ++count;
 r.sleep();
 }
}

As you can see, we are going to create a new topic with the name scan and the
message type sensor_msgs/LaserScan. You must be familiar with this message
type from Chapter 4, Using Sensors and Actuators with ROS. The name of the topic
PXVW�EH�XQLTXH��:KHQ�\RX�FRQÀJXUH�WKH�QDYLJDWLRQ�VWDFN��\RX�ZLOO�VHOHFW�WKLV�
topic to be used for the navigation. The following command line shows how to
create the topic with the correct name:

ros::Publisher scan_pub = n.advertise<sensor_msgs::LaserScan>("scan",
50);

It is important to publish data with header, stamp, frame_id, and many more
elements because, if not, the navigation stack could fail with such data:

scan.header.stamp = scan_time;
scan.header.frame_id = "base_link";

Chapter 7

[�����]

Other important data on header is frame_id. It must be one of the frames created
in the .urdf�ÀOH�DQG�PXVW�KDYH�D�IUDPH�SXEOLVKHG�RQ�WKH�tf frame transforms. The
navigation stack will use this information to know the real position of the sensor
and make transforms such as the one between the data sensor and obstacles.

With this template, you can use any laser although it has no driver for ROS.
You only have to change the fake data with the right data from your laser.

This template can also be used to create something that looks like a laser but is not.
For example, you could simulate a laser using stereoscopy or using a sensor such
as a sonar.

Navigation Stack – Robot Setups

[�����]

3XEOLVKLQJ�RGRPHWU\�LQIRUPDWLRQ
The navigation stack also needs to receive data from the robot odometry. The odometry
is the distance of something relative to a point. In our case, it is the distance between
base_link�DQG�D�À[HG�SRLQW�LQ�WKH�IUDPH�odom.

The type of message used by the navigation stack is nav_msgs/Odometry.
We are going to watch the structure using the following command:

$ rosmsg show nav_msgs/Odometry

As you can see in the message structure, nav_msgs/Odometry gives the position
of the robot between frame_id and child_frame_id. It also gives us the pose
of the robot using the geometry_msgs/Pose message and the velocity with the
geometry_msgs/Twist message.

Chapter 7

[�����]

The pose has two structures that show the position in Euler coordinates and
the orientation of the robot using a quaternion. The orientation is the angular
displacement of the robot.

The velocity has two structures that show the linear velocity and the angular
velocity. For our robot, we will use only the linear x velocity and the angular z
velocity. We will use the linear x velocity to know whether the robot is moving
forward or backward. The angular z velocity is used to check whether the robot
is rotating towards the left or right.

As the odometry is the displacement between two frames, it is necessary to publish
the transform of it. We did it in the last point, but later on in this section, I will show
you an example to publish the odometry and tf of our robot.

Now let me show you how Gazebo works with the odometry.

+RZ�*D]HER�FUHDWHV�WKH�RGRPHWU\
As you have seen in other examples with Gazebo, our robot moves in the
simulated world just like a robot in the real world. We use a driver for our robot,
the diffdrive_plugin��:H�FRQÀJXUHG�WKLV�SOXJLQ�LQ�Chapter 5, 3D Modeling and

Simulation, when you created the robot to use it in Gazebo.

This driver publishes the odometry generated in the simulated world, so we do not
need to write anything for Gazebo.

Execute the robot sample in Gazebo to see the odometry working. Type the following
commands in the shell:

$ roslaunch chapter7_tutorials gazebo_xacro.launch model:="`rospack find
chapter7_tutorials`/urdf/robot1_base_04.xacro"

$ rosrun erratic_teleop erratic_keyboard_teleop

Then, with the teleop node, move the robot for a few seconds to generate new data
on the odometry topic.

Navigation Stack – Robot Setups

[�����]

On the screen of the Gazebo simulator, if you click on robot_model1, you will see
some properties of the object. One of these properties is the pose of the robot. Click
RQ�WKH�SRVH��DQG�\RX�ZLOO�VHH�VRPH�ÀHOGV�ZLWK�GDWD��:KDW�\RX�DUH�ZDWFKLQJ�LV�WKH�
position of the robot in the virtual world. If you move the robot, the data changes:

Gazebo continuously publishes the odometry data. Check the topic and see what data
it is sending. Type the following command in a shell:

$ rostopic echo /odom/pose/pose

The following is the output you will receive:

position:
 x: 0.32924763712
 y: 0.97509878254
 z: 0.0
orientation:
 x: 0.0
 y: 0.0
 z: 0.941128847661
 w: 0.33804806182

Chapter 7

[�����]

Notice that the data is the same as the one you can
see on the Gazebo screen.

As you can observe, Gazebo is creating the odometry as the robot moves. We are
going to see how Gazebo creates it by looking inside the plugin's source code.

The plugin ÀOH�is located in the erratic_gazebo_plugins�SDFNDJH��DQG�WKH�ÀOH�LV�
diffdrive_plugin.cpp��2SHQ�WKH�ÀOH�DQG�\RX�ZLOO�VHH�WKH�IROORZLQJ�FRGH�LQVLGH�
WKH�ÀOH�

$ rosed erratic_gazebo_plugins diffdrive_plugin.cpp

7KH�ÀOH�KDV�D�ORW�RI�FRGH��EXW�WKH�LPSRUWDQW�SDUW�IRU�XV�QRZ�LV�WKH�IROORZLQJ�IXQFWLRQ��
publish_odometry():

void DiffDrivePlugin::publish_odometry()
{
 ros::Time current_time = ros::Time::now();
 std::string odom_frame = tf::resolve(tf_prefix_, "odom");
 std::string base_footprint_frame = tf::resolve(tf_prefix_, "base_
footprint");

 // getting data for base_footprint to odom transform
 math::Pose pose = this->parent->GetState().GetPose();

 btQuaternion qt(pose.rot.x, pose.rot.y, pose.rot.z, pose.rot.w);
 btVector3 vt(pose.pos.x, pose.pos.y, pose.pos.z);

 tf::Transform base_footprint_to_odom(qt, vt);
 transform_broadcaster_->sendTransform(tf::StampedTransform(base_
footprint_to_odom, current_time, odom_frame, base_footprint_frame));

 // publish odom topic
 odom_.pose.pose.position.x = pose.pos.x;
 odom_.pose.pose.position.y = pose.pos.y;

 odom_.pose.pose.orientation.x = pose.rot.x;
 odom_.pose.pose.orientation.y = pose.rot.y;
 odom_.pose.pose.orientation.z = pose.rot.z;
 odom_.pose.pose.orientation.w = pose.rot.w;

 math::Vector3 linear = this->parent->GetWorldLinearVel();
 odom_.twist.twist.linear.x = linear.x;
 odom_.twist.twist.linear.y = linear.y;
 odom_.twist.twist.angular.z = this->parent->GetWorldAngularVel().z;

Navigation Stack – Robot Setups

[�����]

 odom_.header.stamp = current_time;
 odom_.header.frame_id = odom_frame;
 odom_.child_frame_id = base_footprint_frame;

 pub_.publish(odom_);
}

The publish_odometry() function is where the odometry is published. You can see
KRZ�WKH�ÀHOGV�RI�WKH�VWUXFWXUH�DUH�ÀOOHG�DQG�WKH�QDPH�RI�WKH�WRSLF�IRU�WKH�RGRPHWU\�LV�
set (in this case, it is odom). The pose is generated in the other part of the code that we
will see in the following section.

Once you have learned how and where Gazebo creates the odometry, you will be
ready to learn how to publish the odometry and tf for a real robot. The following
FRGH�ZLOO�VKRZ�D�URERW�GRLQJ�FLUFOHV�FRQWLQXRXVO\��7KH�ÀQDOLW\�GRHV�QRW�UHDOO\�PDWWHU��
the important thing to know is how to publish the correct data for our robot.

&UHDWLQJ�RXU�RZQ�RGRPHWU\
Create a new�ÀOH�LQ�chapter7_tutorials/src with the name odometry.cpp and
put the following code in it:

#include <string>
#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>

int main(int argc, char** argv) {

ros::init(argc, argv, "state_publisher");
 ros::NodeHandle n;
 ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom",
10);

 // initial position
 double x = 0.0;
 double y = 0.0;
 double th = 0;

 // velocity
 double vx = 0.4;
 double vy = 0.0;
 double vth = 0.4;

Chapter 7

[�����]

 ros::Time current_time;
 ros::Time last_time;
 current_time = ros::Time::now();
 last_time = ros::Time::now();

 tf::TransformBroadcaster broadcaster;
 ros::Rate loop_rate(20);

 const double degree = M_PI/180;

 // message declarations
 geometry_msgs::TransformStamped odom_trans;
 odom_trans.header.frame_id = "odom";
 odom_trans.child_frame_id = "base_footprint";

 while (ros::ok()) {
 current_time = ros::Time::now();

 double dt = (current_time - last_time).toSec();
 double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
 double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
 double delta_th = vth * dt;

 x += delta_x;
 y += delta_y;
 th += delta_th;

 geometry_msgs::Quaternion odom_quat;
 odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);

 // update transform
 odom_trans.header.stamp = current_time;
 odom_trans.transform.translation.x = x;
 odom_trans.transform.translation.y = y;
 odom_trans.transform.translation.z = 0.0;
 odom_trans.transform.rotation = tf::createQuaternionMsgFromYa
w(th);

 //filling the odometry
 nav_msgs::Odometry odom;
 odom.header.stamp = current_time;
 odom.header.frame_id = "odom";
 odom.child_frame_id = "base_footprint";

Navigation Stack – Robot Setups

[�����]

 // position
 odom.pose.pose.position.x = x;
 odom.pose.pose.position.y = y;
 odom.pose.pose.position.z = 0.0;
 odom.pose.pose.orientation = odom_quat;

 // velocity
 odom.twist.twist.linear.x = vx;
 odom.twist.twist.linear.y = vy;
 odom.twist.twist.linear.z = 0.0;
 odom.twist.twist.angular.x = 0.0;
 odom.twist.twist.angular.y = 0.0;
 odom.twist.twist.angular.z = vth;

 last_time = current_time;

 // publishing the odometry and the new tf
 broadcaster.sendTransform(odom_trans);
 odom_pub.publish(odom);

 loop_rate.sleep();
 }
 return 0;
}

First, create the WUDQVIRUPDWLRQ�YDULDEOH�DQG�ÀOO�LW�ZLWK�frame_id and the child_
frame_id values to know when the frames have to move. In our case, the base
base_footprint will move relatively toward the frame odom:

geometry_msgs::TransformStamped odom_trans;
 odom_trans.header.frame_id = "odom";
 odom_trans.child_frame_id = "base_footprint";

In this part, we generate the pose of the robot. With the linear velocity and the angular
velocity, we can calculate the theoretical position of the robot after a while:

double dt = (current_time - last_time).toSec();
double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
double delta_th = vth * dt;

x += delta_x;
y += delta_y;
th += delta_th;

geometry_msgs::Quaternion odom_quat;
odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);

Chapter 7

[�����]

,Q�WKLV�ERRN��\RX�ZLOO�QRW�ÀQG�DQ�H[SODQDWLRQ�DERXW�WKH�NLQHPDWLFV�
RI�WKH�URERW��<RX�FDQ�ÀQG�D�ORW�RI�OLWHUDWXUH�RQ�WKH�,QWHUQHW�DERXW�LW��
you should look out for "differential wheel kinematics".

On the transformation, ZH�ZLOO�RQO\�ÀOO�LQ�WKH�x and rotation�ÀHOGV��DV�RXU�URERW�
can only move forward and backward and can turn:

 odom_trans.header.stamp = current_time;
 odom_trans.transform.translation.x = x;
 odom_trans.transform.translation.y = 0.0;
 odom_trans.transform.translation.z = 0.0;
 odom_trans.transform.rotation = tf::createQuaternionMsgFromYa
w(th);

With the odometry, we will do the same. Fill the frame_id and child_frame_id
ÀHOGV�ZLWK�odom and base_footprint.

$V�WKH�RGRPHWU\�KDV�WZR�VWUXFWXUHV��ZH�ZLOO�ÀOO�LQ�WKH�x, y, and orientation of
WKH�SRVH��2Q�WKH�WZLVW�VWUXFWXUH��ZH�ZLOO�ÀOO�LQ�WKH�OLQHDU�YHORFLW\�x and the angular
velocity z:

// position
odom.pose.pose.position.x = x;
odom.pose.pose.position.y = y;
odom.pose.pose.orientation = odom_quat;

// velocity
odom.twist.twist.linear.x = vx;
odom.twist.twist.angular.z = vth;

2QFH�DOO�WKH�QHFHVVDU\�ÀHOGV�DUH�ÀOOHG�LQ��SXEOLVK�WKH�GDWD�

// publishing the odometry and the new tf
broadcaster.sendTransform(odom_trans);
odom_pub.publish(odom);

Remember to create the following line in the CMakeLists.txt�ÀOH�EHIRUH�\RX�UXQ�
rosmake chapter7_tutorials:

rosbuild_add_executable(odometry src/odometry.cpp)

Compile the package and launch the robot without using Gazebo, using only rviz
to visualize the model and the movement of the robot. Use the following command
to do this:

$ roslaunch chapter7_tutorials display_xacro.launch model:="`rospack find
chapter7_tutorials`/urdf/robot1_base_04.xacro"

Navigation Stack – Robot Setups

[�����]

And run the odometry node with the following command:

$ rosrun chapter7_tutorials odometry

This is what you will get:

On the rviz screen, you can see the robot moving over some red arrows (grid).
The robot moves over the grid because you published a new tf frame transform for
the robot. The red arrows are the graphical representation for the odometry message.
You will see the robot moving in circles continuously as we programmed in the code.

Creating a base controller
A base controller is an important element in the navigation stack because it is the only
way to effectively control your robot. It communicates directly with the electronics of
your robot.

ROS does not provide a standard base controller, so you must write a base controller
for your mobile platform.

Chapter 7

[�����]

Your robot has to be controlled with the message type geometry_msgs/Twist.
This message is used on the Odometry message that we have seen before.

So, your base controller must subscribe to a topic with the name cmd_vel and must
generate the correct commands to move the platform with the correct linear and
angular velocities.

We are now going to recall the structure of this message. Type the following
command in a shell to see the structure:

$ rosmsg show geometry_msgs/Twist

The output of this command is as follows:

geometry_msgs/Vector3 linear

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 angular

 float64 x

 float64 y

 float64 z

The vector with the name linear indicates the linear velocity for the axes x, y,
and z. The vector with the name angular is for the angular velocity on the axes.

For our robot, we will only use the linear velocity x and the angular velocity z.
This is because our robot is on a differential wheeled platform, and it has two
motors to move the robot forward and backward and to turn.

We are working with a simulated robot on Gazebo, and the base controller is
implemented on the driver used to move/simulate the platform. This means
that we will not have to create the base controller for this robot.

Anyway, in this chapter, you will see an example to implement the base controller
on your physical robot. Before that, let's go to execute our robot on Gazebo to see
how the base controller works. Run the following commands on different shells:

$ roslaunch chapter7_tutorials gazebo_xacro.launch model:="`rospack find
chapter7_tutorials`/urdf/robot1_base_04.xacro"

$ rosrun erratic_teleop erratic_keyboard_teleop

Navigation Stack – Robot Setups

[�����]

When all the nodes are launched and working, open rxgraph to see the relation
between all the nodes:

$ rxgraph

You can see that Gazebo subscribes automatically to the cmd_vel topic that is
generated by the teleoperation node.

Inside the Gazebo simulator, the plugin of our differential wheeled robot is running
and is getting the data from the cmd_vel topic. Also, this plugin moves the robot in
the virtual world and generates the odometry.

8VLQJ�*D]HER�WR�FUHDWH�WKH�RGRPHWU\
To obtain some insight of how Gazebo does that, we are going to have a sneak peek
inside the diffdrive_plugin.cpp�ÀOH�

$ rosed erratic_gazebo_plugins diffdrive_plugin.cpp

Chapter 7

[�����]

The Load(...) function performs the subscription to the topic, and when a cmd_vel
topic is received, the cmdVelCallback() function is executed to handle the message:

void DiffDrivePlugin::Load(physics::ModelPtr _parent, sdf::ElementPtr
_sdf)
{
…
…
ros::SubscribeOptions so =
 ros::SubscribeOptions::create<geometry_msgs::Twist>(topicName,
1, boost::bind(&DiffDrivePlugin::cmdVelCallback, this, _1),
ros::VoidPtr(), &queue_);

}

When a message arrives, the linear and angular velocities are stored in the internal
variables to run some operations later:

void DiffDrivePlugin::cmdVelCallback(const geometry_
msgs::Twist::ConstPtr& cmd_msg)
{
 ...
 ...
 x_ = cmd_msg->linear.x;
 rot_ = cmd_msg->angular.z;
 ...
 ...
}

The plugin estimates the velocity for each motor using the formulas from the kinematic
model of the robot in the following manner:

void DiffDrivePlugin::GetPositionCmd()
{
 ...
 vr = x_;
 va = rot_;

 wheelSpeed[LEFT] = vr + va * wheelSeparation / 2.0;
 wheelSpeed[RIGHT] = vr - va * wheelSeparation / 2.0;
 ...
}

Navigation Stack – Robot Setups

[�����]

$QG�ÀQDOO\��LW estimates the distance traversed by the robot using more formulas from
the kinematic motion model of the robot. As you can see in the code, you must know
the wheel diameter and the wheel separation of your robot:

// Update the controller
void DiffDrivePlugin::UpdateChild()
{
 ...
 ...
 wd = wheelDiameter;
 ws = wheelSeparation;

 // Distance travelled by front wheels
 d1 = stepTime * wd / 2 * joints[LEFT]->GetVelocity(0);
 d2 = stepTime * wd / 2 * joints[RIGHT]->GetVelocity(0);

 dr = (d1 + d2) / 2;
 da = (d1 - d2) / ws;

 // Compute odometric pose
 odomPose[0] += dr * cos(odomPose[2]);
 odomPose[1] += dr * sin(odomPose[2]);
 odomPose[2] += da;

 // Compute odometric instantaneous velocity
 odomVel[0] = dr / stepTime;
 odomVel[1] = 0.0;
 odomVel[2] = da / stepTime;
...
 ...
}

This is the way diffdrive_plugin controls our simulated robot in Gazebo.

Creating our base controller
Now we are going to do something similar, that is, prepare a code to be used with
a real robot with two wheels and encoders.

&UHDWH�D�QHZ�ÀOH�LQ�chapter7_tutorials/src with the name base_controller.
cpp and put in the following code:

#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>

Chapter 7

[�����]

#include <nav_msgs/Odometry.h>
#include <iostream>

using namespace std;

double width_robot = 0.1;
double vl = 0.0;
double vr = 0.0;
ros::Time last_time;
double right_enc = 0.0;
double left_enc = 0.0;
double right_enc_old = 0.0;
double left_enc_old = 0.0;
double distance_left = 0.0;
double distance_right = 0.0;
double ticks_per_meter = 100;
double x = 0.0;
double y = 0.0;
double th = 0.0;
geometry_msgs::Quaternion odom_quat;

void cmd_velCallback(const geometry_msgs::Twist &twist_aux)
{
 geometry_msgs::Twist twist = twist_aux;
 double vel_x = twist_aux.linear.x;
 double vel_th = twist_aux.angular.z;
 double right_vel = 0.0;
 double left_vel = 0.0;

 if(vel_x == 0){
// turning
 right_vel = vel_th * width_robot / 2.0;
 left_vel = (-1) * right_vel;
 }else if(vel_th == 0){
// forward / backward
 left_vel = right_vel = vel_x;
 }else{
// moving doing arcs
 left_vel = vel_x - vel_th * width_robot / 2.0;
 right_vel = vel_x + vel_th * width_robot / 2.0;
 }
 vl = left_vel;
 vr = right_vel;
}

Navigation Stack – Robot Setups

[�����]

int main(int argc, char** argv){
 ros::init(argc, argv, "base_controller");
 ros::NodeHandle n;
 ros::Subscriber cmd_vel_sub = n.subscribe("cmd_vel", 10, cmd_
velCallback);
 ros::Rate loop_rate(10);

 while(ros::ok())
 {

 double dxy = 0.0;
 double dth = 0.0;
 ros::Time current_time = ros::Time::now();
 double dt;
 double velxy = dxy / dt;
 double velth = dth / dt;

 ros::spinOnce();
 dt = (current_time - last_time).toSec();;
 last_time = current_time;

 // calculate odomety
 if(right_enc == 0.0){
 distance_left = 0.0;
 distance_right = 0.0;
 }else{
 distance_left = (left_enc - left_enc_old) / ticks_per_meter;
 distance_right = (right_enc - right_enc_old) / ticks_per_
meter;
 }

 left_enc_old = left_enc;
 right_enc_old = right_enc;

 dxy = (distance_left + distance_right) / 2.0;
 dth = (distance_right - distance_left) / width_robot;

 if(dxy != 0){
 x += dxy * cosf(dth);
 y += dxy * sinf(dth);
 }

 if(dth != 0){
 th += dth;
 }
 odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);
 loop_rate.sleep();
 }
}

Chapter 7

[�����]

Notice that the equations are similar to diffdrive_plugin;
this is because both robots are differential wheeled robots.

Do not forget to insert the following in your CMakeLists.txt�ÀOH�WR�FUHDWH�WKH�
H[HFXWDEOH�RI�WKLV�ÀOH�

rosbuild_add_executable(base_controller src/base_controller.cpp)

This code is only a common example and must be extended with more code to make
LW�ZRUN�ZLWK�D�VSHFLÀF�URERW��,W�GHSHQGV�RQ�WKH�FRQWUROOHU�XVHG��WKH�HQFRGHUV��DQG�
so on. We assume that you have the right background to add the necessary code in
RUGHU�WR�PDNH�WKH�H[DPSOH�ZRUN�ÀQH�

&UHDWLQJ�D�PDS�ZLWK�526
Getting a map can sometimes be a complicated task if you do not have the correct
tools. ROS has a tool that will help you build a map using the odometry and a laser
sensor. This tool is the map_server (http://www.ros.org/wiki/slam_gmapping).
In this example, you will learn how to use the robot that we created in Gazebo, as
we did in the previous chapters, to create a map, to save it, and load it again.

We are going to use a .launch�ÀOH�WR�PDNH�LW�HDV\��&UHDWH�D�QHZ�ÀOH�LQ�chapter7_
tutorials/launch with the name gazebo_mapping_robot.launch and put in the
following code:

<?xml version="1.0"?>
<launch>
 <param name="/use_sim_time" value="true" />

 <!-- start up wg world -->
 <include file="$(find gazebo_worlds)/launch/wg_collada_world.
launch"/>

 <arg name="model" />
 <param name="robot_description" command="$(find xacro)/xacro.py
$(arg model)" />

 <node name="spawn_robot" pkg="gazebo" type="spawn_model" args="-urdf
-param robot_description -z 0.1 -model robot_model" respawn="false"
output="screen" />

 <node name="rviz" pkg="rviz" type="rviz" args="$(find chapter7_
tutorials/)launch/mapping.vcg"/>

Navigation Stack – Robot Setups

[�����]

 <node name="slam_gmapping" pkg="gmapping" type="slam_gmapping">
 <remap from="scan" to="base_scan/scan"/>
 </node>
</launch>

With this .launch�ÀOH��\RX�FDQ�ODXQFK�WKH�*D]HER�VLPXODWRU�ZLWK�WKH��'�PRGHO��WKH�
rviz�SURJUDP�ZLWK�WKH�FRUUHFW�FRQÀJXUDWLRQ�ÀOH��DQG�slam_mapping to build a map
LQ�UHDO�WLPH��/DXQFK�WKH�ÀOH�LQ�D�VKHOO��DQG�LQ�WKH�RWKHU�VKHOO��UXQ�WKH�WHOHRSHUDWLRQ�
node to move the robot:

$ roslaunch chapter7_tutorials gazebo_mapping_robot.launch
model:="`rospack find chapter7_tutorials`/urdf/robot1_base_04.xacro"

$ rosrun erratic_teleop erratic_keyboard_teleop

When you start to move the robot with the keyboard, you will see the free and the
unknown space on the rviz screen as well as the map with the occupied space; this
is known as an Occupancy Grid Map (OGM). The slam_mapping node updates the
PDS�VWDWH�ZKHQ�WKH�URERW�PRYHV��RU�PRUH�VSHFLÀFDOO\��ZKHQ��DIWHU�VRPH�PRWLRQ��
it has a good estimate of the robot's location and how the map is. It takes the laser
scans and the odometry and builds the OGM for you.

Chapter 7

[�����]

6DYLQJ�WKH�PDS�XVLQJ�PDSBVHUYHU
Once you have a complete map or something acceptable, you can save it to use it
later in the navigation stack. To save it, use the following command:

$ rosrun map_server map_saver -f map

7KLV�FRPPDQG�ZLOO�FUHDWH�WZR�ÀOHV��map.pgm and map.yaml��7KH�ÀUVW�RQH�LV�WKH�PDS�
in the .pgm�IRUPDW��WKH�SRUWDEOH�JUD\�PDS�IRUPDW���7KH�RWKHU�LV�WKH�FRQÀJXUDWLRQ�ÀOH�
for the map. If you open it, you will see the following output:

Now, open the .pgm�LPDJH�ÀOH�ZLWK�\RXU�IDYRULWH�YLHZHU��DQG�\RX�ZLOO�VHH�WKH�PDS�
built before you:

Navigation Stack – Robot Setups

[�����]

/RDGLQJ�WKH�PDS�XVLQJ�PDSBVHUYHU
When you want to use the map built with your robot, it is necessary to load it with
the map_server package. The following command will load the map:

$ rosrun map_server map_server map.yaml

But to make it easy, create another .launch�ÀOH�LQ�chapter7_tutorials/launch
with the name gazebo_map_robot.launch and put in the following code:

<?xml version="1.0"?>
<launch>
 <param name="/use_sim_time" value="true" />
 <!-- start up wg world -->
 <include file="$(find gazebo_worlds)/launch/wg_collada_world.
launch"/>
 <arg name="model" />
 <param name="robot_description" command="$(find xacro)/xacro.py
$(arg model)" />
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" ></node>
 <!-- start robot state publisher -->
 <node pkg="robot_state_publisher" type="state_publisher"
name="robot_state_publisher" output="screen" >
 <param name="publish_frequency" type="double" value="50.0" />
 </node>
 <node name="spawn_robot" pkg="gazebo" type="spawn_model"
args="-urdf -param robot_description -z 0.1 -model robot_model"
respawn="false" output="screen" />
 <node name="map_server" pkg="map_server" type="map_server" args="
$(find chapter7_tutorials)/maps/map.yaml" />
 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find chapter7_
tutorials)/launch/mapping.vcg" />
</launch>

$QG�QRZ��ODXQFK�WKH�ÀOH�XVLQJ�WKH�IROORZLQJ�FRPPDQG�DQG�UHPHPEHU�WR�SXW�WKH�
model of the robot that will be used:

$ roslaunch chapter7_tutorials gazebo_map_robot.launch model:="`rospack
find chapter7_tutorials`/urdf/robot1_base_04.xacro"

Then you will see rviz with the robot and the map. The navigation stack, in order to
know the localization of the robot, will use the map published by the map server and
the laser readings. This will help it perform a scan matching algorithm that helps to
HVWLPDWH�WKH�URERW
V�ORFDWLRQ�XVLQJ�D�SDUWLFOH�ÀOWHU�LPSOHPHQWHG�LQ�WKH amcl (adaptive
Monte Carlo localization) node.

We will see more about maps as well as more useful tools in the next chapter.

Chapter 7

[�����]

6XPPDU\
,Q�WKLV�FKDSWHU��\RX�ZRUNHG�RQ�WKH�VWHSV�UHTXLUHG�WR�FRQÀJXUH�\RXU�URERW�LQ�RUGHU�
to use it with the navigation stack. Now you know that the robot must have a planar
laser, must be a differential wheeled robot, and it should satisfy some requirements
for the base control and the geometry.

Keep in mind that we are working with Gazebo to demonstrate the examples and
H[SODLQ�KRZ�WKH�QDYLJDWLRQ�VWDFN�ZRUNV�ZLWK�GLIIHUHQW�FRQÀJXUDWLRQV��,W�LV�PRUH�
complex to explain all of this directly on a real, robotic platform because we do not
know whether you have one or have access to one. In any case, depending on the
platform, the instructions may vary and the hardware may fail, so it is safer and
useful to run these algorithms in simulations; later, we can test them on a real robot,
DV�ORQJ�DV�LW�VDWLVÀHV�WKH�UHTXLUHPHQWV�GHVFULEHG�WKXV�IDU�

,Q�WKH�QH[W�FKDSWHU��\RX�ZLOO�OHDUQ�KRZ�WR�FRQÀJXUH�WKH�QDYLJDWLRQ�VWDFN��FUHDWH�
the .launch�ÀOHV��DQG�QDYLJDWH�DXWRQRPRXVO\�LQ�*D]HER�ZLWK�WKH�URERW�WKDW�\RX�
created in the previous chapters.

In brief, what you will learn after this chapter will be extremely useful because
LW�VKRZV�\RX�KRZ�WR�FRQÀJXUH�HYHU\WKLQJ�FRUUHFWO\�VR�\RX�NQRZ�KRZ�WR�XVH�WKH�
navigation stack with other robots, either simulated or real.

Navigation Stack –
Beyond Setups

We are getting close to the end of the book, and this is when we will use all the
knowledge acquired through it. We have created packages, nodes, 3D models
of robots, and more. In Chapter 7, Navigation Stack – Robot Setups�\RX�FRQÀJXUHG�
your robot in order to be used with the navigation stack, and in this chapter, we
ZLOO�ÀQLVK�WKH�FRQÀJXUDWLRQ�IRU�WKH�QDYLJDWLRQ�VWDFN�VR�WKDW�\RX�ZLOO�OHDUQ�KRZ�
to use it with your robot.

All the work done in the previous chapters has been a preamble for this precise
moment. This is when the fun begins and when the robots come alive.

In this chapter we are going to learn how to do the following:

�� Apply the knowledge of Chapter 7, Navigation Stack – Robot Setups and
the programs developed

�� Understand the navigation stack and how it works
�� &RQÀJXUH�DOO�WKH�QHFHVVDU\�ÀOHV
�� &UHDWH�ODXQFK�ÀOHV�WR�VWDUW�WKH�QDYLJDWLRQ�VWDFN

Let's go.

Navigation Stack – Beyond Setups

[�����]

Creating a package
The correct way to do it is by adding the dependencies with the other packages
created for your robot. For example, you could use the next command to create
the package:

$ roscreate-pkg my_robot_name_2dnav move_base my_tf_configuration_dep my_
odom_configuration_dep my_sensor_configuration_dep

But in our case, as we have everything in the same package, it is only necessary to
execute the following:

$ roscreate-pkg chapter8_tutorials roscpp

Remember that LQ�WKH�UHSRVLWRU\��\RX�PD\�ÀQG�DOO�WKH�QHFHVVDU\�ÀOHV�IRU�WKH�FKDSWHU�

&UHDWLQJ�D�URERW�FRQ¿JXUDWLRQ
To launch WKH�HQWLUH�URERW��ZH�DUH�JRLQJ�WR�FUHDWH�D�ODXQFK�ÀOH�ZLWK�DOO�WKH�QHFHVVDU\�
ÀOHV�WR�DFWLYDWH�DOO�WKH�V\VWHPV�

Keep in mind that this example is for a simulated robot in
Gazebo. If you remember the previous chapters, Gazebo
publishes the odometry and the tf for us.

$Q\ZD\��KHUH�\RX�KDYH�D�ODXQFK�ÀOH�IRU�D�UHDO�URERW�WKDW�\RX�FDQ�XVH�DV�D�WHPSODWH�

The following script is present in configuration_template.launch:

<launch>
 <node pkg="sensor_node_pkg" type="sensor_node_type" name="sensor_
node_name" output="screen">
 <param name="sensor_param" value="param_value" />
 </node>

 <node pkg="odom_node_pkg" type="odom_node_type" name="odom_node"
output="screen">
 <param name="odom_param" value="param_value" />
 </node>

 <node pkg="transform_configuration_pkg" type="transform_
configuration_type" name="transform_configuration_name"
output="screen">
 <param name="transform_configuration_param" value="param_value" />
 </node>
</launch>

Chapter 8

[�����]

7KLV�ODXQFK�ÀOH�ZLOO�ODXQFK�WKUHH�QRGHV�WKDW�ZLOO�VWDUW�XS�WKH�URERW�

7KH�ÀUVW�RQH�LV�WKH�QRGH�UHVSRQVLEOH�IRU�DFWLYDWLQJ�WKH�VHQVRUV��IRU�H[DPSOH��WKH�Laser
Imaging, Detection, and Ranging (LIDAR) system. The parameter sensor_param
FDQ�EH�XVHG�WR�FRQÀJXUH�WKH�VHQVRU
V�SRUW��IRU�H[DPSOH��LI�WKH�VHQVRU�XVHV�D�86%�
connection. If your sensor needs more parameters, you need to duplicate the line
and add the necessary parameters. Some robots have more than one sensor to help
LQ�WKH�QDYLJDWLRQ��,Q�WKLV�FDVH��\RX�FDQ�DGG�PRUH�QRGHV�RU�FUHDWH�D�ODXQFK�ÀOH�IRU�
WKH�VHQVRUV�DQG�LQFOXGH�LW�LQ�WKLV�ODXQFK�ÀOH��7KLV�FRXOG�EH�D�JRRG�RSWLRQ�IRU�HDVLO\�
PDQDJLQJ�DOO�WKH�QRGHV�LQ�WKH�VDPH�ÀOH�

The second node is to start the odometry, the base control, and all the necessary
ÀOHV�WR�PRYH�WKH�EDVH�DQG�FDOFXODWH�WKH�URERW
V�SRVLWLRQ��5HPHPEHU�WKDW�LQ�Chapter 7,
Navigation Stack – Robot Setups we did these nodes. Like in the other section, you can
XVH�WKH�SDUDPHWHUV�WR�FRQÀJXUH�VRPHWKLQJ�LQ�WKH�odometry or replicate the line to
add more nodes.

The third part is meant to launch the node responsible for publishing and calculating
the geometry of the robot, and the transform between arms, sensors, and so on.

7KH�SUHYLRXV�ÀOH�LV�IRU�\RXU�UHDO�URERW��EXW�IRU�RXU�H[DPSOH��WKH�QH[W�ODXQFK�ÀOH�LV�DOO�
we need.

&UHDWH�D�QHZ�ÀOH�LQ�chapter8_tutorials/launch with the name chapter8_
configuration_gazebo.launch and add the following code:

<launch>

 <param name="/use_sim_time" value="true" />

 <!-- start up wg world -->
 <include file="$(find gazebo_worlds)/launch/wg_collada_world.
launch"/>

 <arg name="model" default="$(find chapter8_tutorials)/urdf/robot1_
base_04.xacro"/>
 <param name="robot_description" command="$(find xacro)/xacro.py
$(arg model)" />

 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" ></node>
 <!-- start robot state publisher -->
 <node pkg="robot_state_publisher" type="state_publisher"
name="robot_state_publisher" output="screen" />

Navigation Stack – Beyond Setups

[�����]

 <node name="spawn_robot" pkg="gazebo" type="spawn_model" args="-urdf
-param robot_description -z 0.1 -model robot_model" respawn="false"
output="screen" />

 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find chapter8_
tutorials)/launch/navigation.vcg" />

</launch>

This launch ÀOH�LV�WKH�VDPH�WKDW�ZH�XVHG�LQ�WKH�SUHYLRXV�FKDSWHUV��VR�LW�GRHV�QRW�QHHG�
any additional explanation.

1RZ�WR�ODXQFK�WKLV�ÀOH��XVH�WKH�QH[W�FRPPDQG�

$ roslaunch chapter8_tutorials chapter8_configuration_gazebo.launch

You will see the next window:

1RWLFH�WKDW�LQ�WKH�SUHYLRXV�VFUHHQVKRW��WKHUH�DUH�VRPH�ÀHOGV�LQ�UHG��EOXH��DQG�\HOORZ��
ZLWKRXW�\RX�KDYLQJ�WR�FRQÀJXUH�DQ\WKLQJ�EHIRUH��7KLV�LV�EHFDXVH�LQ�WKH�ODXQFK�ÀOH��
D�FRQÀJXUDWLRQ�ÀOH�IRU�WKH�rviz layout is loaded along with rviz��DQG�WKLV�ÀOH�ZDV�
FRQÀJXUHG�LQ�WKH�SUHYLRXV�FKDSWHU�RI�WKLV�ERRN�

,Q�WKH�XSFRPLQJ�VHFWLRQV��\RX�ZLOO�OHDUQ�KRZ�WR�FRQÀJXUH�rviz to use it with the
navigation stack and view all the topics.

Chapter 8

[�����]

&RQ¿JXULQJ�WKH�FRVWPDSV�
�JOREDOBFRVWPDS��DQG��ORFDOBFRVWPDS�
Okay, now ZH�DUH�JRLQJ�WR�VWDUW�FRQÀJXULQJ�WKH�QDYLJDWLRQ�stack and all the
QHFHVVDU\�ÀOHV�WR�VWDUW�LW��7R�VWDUW�ZLWK�WKH�FRQÀJXUDWLRQ��ÀUVW�ZH�ZLOO�OHDUQ�ZKDW�
costmaps are and what they are used for. Our robot will move through the map
using two types of navigation—global and local.

�� The global navigation is used to create paths for a goal in the map or
a far-off distance

�� The local navigation is used to create paths in the nearby distances
and avoid obstacles, for example, a square window of 4 x 4 meters
around the robot

These modules use costmaps to keep all the information of our map. The global
costmap is used for the global navigation and the local costmap for local
navigation.

7KH�FRVWPDSV�KDYH�SDUDPHWHUV�WR�FRQÀJXUH�WKH�EHKDYLRUV��DQG�WKH\�KDYH�FRPPRQ�
SDUDPHWHUV�DV�ZHOO��ZKLFK�DUH�FRQÀJXUHG�LQ�D�VKDUHG�ÀOH�

&RQÀJXUDWLRQ�EDVLFDOO\�FRQVLVWV�RI�WKUHH�ÀOHV�ZKHUH�ZH�FDQ�VHW�XS�GLIIHUHQW�
SDUDPHWHUV��7KH�ÀOHV�DUH�DV�IROORZV�

�� costmap_common_params.yaml

�� global_costmap_params.yaml

�� local_costmap_params.yaml

-XVW�E\�UHDGLQJ�WKH�QDPHV�RI�WKHVH�FRQÀJXUDWLRQ�ÀOHV��\RX�FDQ�LQVWDQWO\�JXHVV�
what they are used for. Now that you have a basic idea about the usage of costmaps,
ZH�DUH�JRLQJ�WR�FUHDWH�WKH�FRQÀJXUDWLRQ�ÀOHV�DQG�H[SODLQ�WKH�SDUDPHWHUV�WKDW�DUH�
FRQÀJXUHG�LQ�WKHP�

&RQ¿JXULQJ�WKH�FRPPRQ�SDUDPHWHUV
Let's start with�WKH�FRPPRQ�SDUDPHWHUV��&UHDWH�D�QHZ�ÀOH�LQ�chapter8_tutorials/
launch with the name costmap_common_params.yaml and add the following code.

The following script is present in costmap_common_params.yaml:

obstacle_range: 2.5
raytrace_range: 3.0

Navigation Stack – Beyond Setups

[�����]

footprint: [[-0.2,-0.2],[-0.2,0.2], [0.2, 0.2], [0.2,-0.2]]
#robot_radius: ir_of_robot
inflation_radius: 0.55

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: laser_base_link, data_type:
LaserScan, topic: /base_scan/scan, marking: true, clearing: true}

7KLV�ÀOH�LV�XVHG�WR�FRQÀJXUH�FRPPRQ�SDUDPHWHUV��7KH�SDUDPHWHUV�DUH�XVHG�LQ�
local_costmap and global_costmap. Let's break the code and understand it.

The obstacle_range and raytrace_range attributes are used to indicate the
maximum distance that the sensor will read and introduce new information in the
FRVWPDSV��7KH�ÀUVW�RQH�LV�XVHG�IRU�WKH�REVWDFOHV��,I�WKH�URERW�GHWHFWV�DQ�REVWDFOH�FORVHU�
than 2.5 meters in our case, it will put the obstacle in the costmap. The other one is
used to clean/clear the costmap and update the free space in it when the robot moves.
Note that we can only detect the "echo" of the laser or sonar with the obstacle, we
cannot perceive the whole obstacle or object itself, but this simple approach will be
enough to deal with these kinds of measurements, and we will be able to build a
map and localize within it.

The footprint attribute is used to indicate to the navigation stack the geometry
of the robot. It will be used to keep the right distance between the obstacles and
the robot, or to know if the robot can go through a door. The inflation_radius
attribute is the value given to keep a minimal distance between the geometry of
the robot and the obstacles.

With the observation sources, you can set the sensors used by the navigation stack
to get the data from the real world and calculate the path.

In our case, we are using a simulated LIDAR in Gazebo, but we can use a point
cloud to do the same.

7KH�QH[W�OLQH�ZLOO�FRQÀJXUH�WKH�VHQVRU
V�IUDPH�DQG�WKH�XVHV�RI�WKH�GDWD��

laser_scan_sensor: {sensor_frame: laser_base_link, data_type:
LaserScan, topic: /base_scan/scan, marking: true, clearing: true}

7KH�ODVHU�FRQÀJXUHG�LQ�WKH�SUHYLRXV�OLQH�LV�XVHG�WR�DGG�DQG�FOHDU�REVWDFOHV�LQ�WKH�
FRVWPDS��)RU�H[DPSOH��\RX�FRXOG�DGG�D�VHQVRU�ZLWK�D�ZLGH�UDQJH�WR�ÀQG�REVWDFOHV�DQG�
DQRWKHU�VHQVRU�WR�QDYLJDWH�DQG�FOHDU�WKH�REVWDFOHV��7KH�WRSLF
V�QDPH�LV�FRQÀJXUHG�LQ�
WKLV�OLQH��LW�LV�LPSRUWDQW�WR�FRQÀJXUH�LW�ZHOO�EHFDXVH�WKH�QDYLJDWLRQ�VWDFN�FRXOG�ZDLW�
for another topic, all this while the robot is moving, and it can crash into a wall or
an obstacle.

Chapter 8

[�����]

&RQ¿JXULQJ�WKH�JOREDO�FRVWPDS
The QH[W�ÀOH�IRU�WKH�FRQÀJXUDWLRQ�LV�WKH�global costmap�FRQÀJXUDWLRQ�ÀOH��&UHDWH�D�
QHZ�ÀOH�LQ�chapter8_tutorials/launch with the name global_costmap_params.
yaml and add the following code:

global_costmap:
 global_frame: /map
 robot_base_frame: /base_footprint
 update_frequency: 1.0
 static_map: true

The global_frame and the robot_base_frame�DWWULEXWHV�GHÀQH�WKH�WUDQVIRUPDWLRQ�
between the map and the robot. This transformation is for the global costmap.

<RX�FDQ�FRQÀJXUH�WKH�IUHTXHQF\�IRU�WKH�XSGDWHV�IRU�WKH�FRVWPDS��,Q�WKLV�FDVH��LW�LV���
Hz. The static_map attribute is used for the global costmap to know if a map or the
map server is used to initialize the costmap. If you aren't using a static map, set this
parameter to false.

&RQ¿JXULQJ�WKH�ORFDO�FRVWPDS
The previous�ÀOH�LV�WR�FRQÀJXUH�WKH�ORFDO�FRVWPDS��FUHDWH�D�QHZ�ÀOH�LQ�chapter8_
tutorials/launch with the name local_costmap_params.yaml and add the
following code:

local_costmap:
 global_frame: /map
 robot_base_frame: /base_footprint
 update_frequency: 1.0
 publish_frequency: 2.0
 static_map: true
 rolling_window: false
 width: 10.0
 height: 10.0
 resolution: 0.1

The global_frame, robot_base_frame, update_frequency, and static_map
parameters are the same as described in the previous section, Creating a robot

FRQÀJXUDWLRQ. The publish_frequency parameter determines the frequency to
publish information. The rolling_window parameter is used to keep the costmap
centered on the robot when it is moving around the world.

Navigation Stack – Beyond Setups

[�����]

<RX�FDQ�FRQÀJXUH the dimensions and the resolution of the costmap with the width,
height, and resolution parameters. The values are given in meters.

%DVH�ORFDO�SODQQHU�FRQ¿JXUDWLRQ
Once we KDYH�WKH�FRVWPDSV�FRQÀJXUHG��LW�LV�QHFHVVDU\�WR�FRQÀJXUH�WKH�EDVH�SODQQHU��
The base planner is used to generate the velocity commands to move our robot. Create
D�QHZ�ÀOH�LQ�chapter8_tutorials/launch with the name base_local_planner_
params.yaml and add the following code:

TrajectoryPlannerROS:
 max_vel_x: 1
 min_vel_x: 0.5
 max_rotational_vel: 1.0
 min_in_place_rotational_vel: 0.4

 acc_lim_th: 3.2
 acc_lim_x: 2.5
 acc_lim_y: 2.5

 holonomic_robot: false

The config�ÀOH�ZLOO�VHW�WKH�PD[LPXP�DQG�PLQLPXP�YHORFLWLHV�IRU�\RXU�URERW��
Also, the acceleration is set.

The holonomic_robot parameter is true if you are using a holonomic platform.
In our case, our robot is based on a non-holonomic platform and the parameter is
set to false. A holonomic vehicle�LV�RQH�WKDW�FDQ�PRYH�LQ�DOO�WKH�FRQÀJXUHG�VSDFH�
IURP�DQ\�SRVLWLRQ��,Q�RWKHU�ZRUGV��LI�WKH�SODFHV�ZKHUH�WKH�URERW�FDQ�JR�DUH�GHÀQHG�
by any x and y values in the environment, this means that the robot can move there
from any position. For example, if the robot can move forward, backward, and
laterally, it is holonomic. A typical case of a non-holonomic vehicle is a car, as it
cannot move laterally, and from a given position, there are many other positions
(or poses) that are not reachable. Also, a differential platform is non-holonomic.

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 8

[�����]

&UHDWLQJ�D�ODXQFK�¿OH�IRU�WKH�QDYLJDWLRQ�
stack
Now, we KDYH�DOO�WKH�ÀOHV�FUHDWHG�DQG�WKH�QDYLJDWLRQ�VWDFN�LV�FRQÀJXUHG��7R�UXQ�
HYHU\WKLQJ��ZH�DUH�JRLQJ�WR�FUHDWH�D�ODXQFK�ÀOH��&UHDWH�D�QHZ�ÀOH�LQ�WKH�chapter8_
tutorials/launch�IROGHU�DQG�SXW�WKH�QH[W�FRGH�LQ�D�ÀOH�ZLWK�WKH�QDPH�move_base.
launch:

<launch>

 <!-- Run the map server -->
 <node name="map_server" pkg="map_server" type="map_server"
args="$(find chapter8_tutorials)/maps/map.yaml" output="screen"/>

 <include file="$(find amcl)/examples/amcl_diff.launch" >
 </include>

 <node pkg="move_base" type="move_base" respawn="false" name="move_
base" output="screen">
 <rosparam file="$(find chapter8_tutorials)/launch/costmap_common_
params.yaml" command="load" ns="global_costmap" />
 <rosparam file="$(find chapter8_tutorials)/launch/costmap_common_
params.yaml" command="load" ns="local_costmap" />
 <rosparam file="$(find chapter8_tutorials)/launch/local_costmap_
params.yaml" command="load" />
 <rosparam file="$(find chapter8_tutorials)/launch/global_costmap_
params.yaml" command="load" />
 <rosparam file="$(find chapter8_tutorials)/launch/base_local_
planner_params.yaml" command="load" />
 </node>
</launch>

1RWLFH�WKDW�LQ�WKLV�ÀOH��ZH�DUH�ODXQFKLQJ�DOO�WKH�ÀOHV�FUHDWHG�EHIRUH��:H�ZLOO�ODXQFK�D�
map server as well with a map that we created in Chapter 7, Navigation Stack – Robot

Setups and the amcl node.

The amcl node that we are going to use is for differential robots because our robot
is a differential robot. If you want to use amcl with holonomic robots, you will need
to use the amcl_omni.launch�ÀOH��,I�\RX�ZDQW�WR�XVH�DQRWKHU�PDS��JR�WR�Chapter 7,
Navigation Stack – Robot Setups and create a new one.

1RZ�ODXQFK�WKH�ÀOH�DQG�W\SH�WKH�QH[W�FRPPDQG�RQ�D�QHZ�VKHOO��5HFDOO�WKDW�EHIRUH�
\RX�ODXQFK�WKLV�ÀOH� you must launch the chapter8_configuration_gazebo.
launch�ÀOH�

$ roslaunch chapter8_tutorials move_base.launch

Navigation Stack – Beyond Setups

[�����]

And you will see the following window:

If you compare this image with the image that you saw when you launched the
chapter8_configuration_gazebo.launch�ÀOH��\RX�ZLOO�VHH�WKDW�DOO�WKH�RSWLRQV�
are in blue; this is a good signal and it means that everything is OK.

As we said before, in the next section you will learn what options are necessary
to visualize all the topics used in a navigation stack.

Setting up rviz for the navigation stack
It is good practice to visualize all the possible data to know what the navigation
stack does. In this section, we will show you the visualization topic that you must
add to rviz to see the correct data sent by the navigation stack. Discussions of each
visualization topic that the navigation stack publishes is explained next.

Chapter 8

[�����]

�'�SRVH�HVWLPDWH
The 2D pose estimate (P shortcut) allows the user to initialize the localization
system used by the navigation stack by setting the pose of the robot in the world.
The navigation stack waits for the new pose of a new topic with the name
initialpose. This topic is sent using the rviz windows where we previously
changed the name of the topic.

You can see in the following screenshot how you can use initialpose. Click on the
2D Pose Estimate button and click on the map to indicate the initial position of your
robot. If you don't do this at the beginning, the robot will start the auto-localization
process and try to set an initial pose.

�� Topic: initialpose

�� Type: geometry_msgs/PoseWithCovarianceStamped

Navigation Stack – Beyond Setups

[�����]

�'�QDY�JRDO
The 2D nav goal (G shortcut) allows the user to send a goal to the navigation by
setting a desired pose for the robot to achieve. The navigation stack waits for a new
goal with the topic's name /move_base_simple/goal; for this reason, you must
change the topic's name in the rviz windows in Tool Properties in the 2D Nav Goal
menu. The new name that you must put in this textbox is /move_base_simple/goal.
In the next window, you can see how to use it. Click on the 2D Nav Goal button and
select the map and the goal for your robot. You can select the x and y position and
the end orientation for the robot.

�� Topic: move_base_simple/goal

�� Type: geometry_msgs/PoseStamped

6WDWLF�PDS
This displays the static map that is being served by the map_server, if one exists.
When you add this visualization, you will see the map we captured in Chapter 7,
Navigation Stack – Robot Setups in the Creating a map with ROS section.

In the next window, you can see the display type that you need to select and the
name that you must put in the display name.

�� Topic: map

�� Type: nav_msgs/GetMap

Chapter 8

[�����]

Particle cloud
It displays the particle cloud used by the robot's localization system. The spread
of the cloud represents the localization system's uncertainty about the robot's pose.
$�FORXG�WKDW�VSUHDGV�RXW�D�ORW�UHÁHFWV�KLJK�XQFHUWDLQW\��ZKLOH�D�FRQGHQVHG�FORXG�
represents low uncertainty. In our case, you will obtain the next cloud for the robot:

�� Topic: particlecloud

�� Type: geometry_msgs/PoseArray

Navigation Stack – Beyond Setups

[�����]

Robot footprint
It shows the footprint of the robot; in our case, the robot has a footprint, which
has a width of 0.4 meters and a height of 0.4 meters. Remember that this parameter
LV�FRQÀJXUHG�LQ�WKH�costmap_common_params�ÀOH��7KLV�GLPHQVLRQ�LV�LPSRUWDQW�
because the navigation stack will move the robot in a safe mode using the values
FRQÀJXUHG�EHIRUH�

�� Topic: local_costmap/robot_footprint

�� Type: geometry_msgs/Polygon

Chapter 8

[�����]

Obstacles
It shows the obstacles that the navigation stack sees in its costmap. In the following
screenshot, you can see it in red over the black line in the map. The red line is the
detected obstacle. You could also see red lines in the middle of the map if a temporal
obstacle is in front of the robot. For the robot to avoid collision, the robot's footprint
should never intersect with a cell that contains an obstacle.

�� Topic: local_costmap/obstacles

�� Type: nav_msgs/GridCells

Navigation Stack – Beyond Setups

[�����]

,QÀDWHG�REVWDFOHV
It shows obstacles in the navigation�VWDFN
V�FRVWPDS�LQÁDWHG�E\�WKH�LQVFULEHG�UDGLXV�
of the robot. Like the red line from the obstacle, you could see in the middle of the
map blue lines or shapes that indicate that a temporal obstacle is in front of the robot.
For the robot to avoid collision, the center point of the robot should never overlap
ZLWK�D�FHOO�WKDW�FRQWDLQV�DQ�LQÁDWHG�REVWDFOH�

�� Topic: local_costmap/inflated_obstacles

�� Type: nav_msgs/GridCells

Global plan
It shows the portion of the global plan that the local planner is currently pursuing.
<RX�FDQ�VHH�LW�LQ�JUHHQ�LQ�WKH�QH[W�LPDJH��3HUKDSV�WKH�URERW�ZLOO�ÀQG�REVWDFOHV�
during the movement and the navigation stack will recalculate a new path to avoid
collisions and try to follow the global plan.

�� Topic: TrajectoryPlannerROS/global_plan

�� Type: nav_msgs/Path

Chapter 8

[�����]

Local plan
It shows the trajectory associated with the velocity commands currently being
commanded to the base by the local planner. You can see the trajectory in blue in front
of the robot in the next image. You can use this display to know whether the robot is
moving and the approximate velocity depending on the length of the blue line.

�� Topic: TrajectoryPlannerROS/local_plan

�� Type: nav_msgs/Path

Navigation Stack – Beyond Setups

[�����]

Planner plan
It displays the full plan for the robot computed by the global planner. You will see
that it is similar to the global plan.

�� Topic: NavfnROS/plan

�� Type: nav_msgs/Path

Current goal
It shows the goal pose that the navigation stack is attempting to achieve. You can see
it as a red arrow, and it is displayed after you put a new 2D nav goal. It can be used
WR�NQRZ�WKH�ÀQDO�SRVLWLRQ�RI�WKH�URERW�

�� Topic: current_goal

�� Type: geometry_msgs/PoseStamped

Chapter 8

[�����]

These visualizations are all you need to see the navigation stack in rviz. With this,
you can notice if the robot is doing something strange. Now we are going to see a
general image of the system. Run rxgraph to see whether all the nodes are running
and to see the relations between them.

Navigation Stack – Beyond Setups

[�����]

$GDSWLYH�0RQWH�&DUOR�/RFDOL]DWLRQ��$0&/�
In this chapter, we are using the amcl algorithm for the localization. amcl is a
probabilistic localization system for a robot moving in 2D. This system implements
WKH�DGDSWLYH�0RQWH�&DUOR�ORFDOL]DWLRQ�DSSURDFK��ZKLFK�XVHV�D�SDUWLFOH�ÀOWHU�WR�WUDFN�
the pose of a robot against a known map.

amcl�KDV�PDQ\�FRQÀJXUDWLRQ�RSWLRQV that will affect the performance of localization.
For more information on amcl, please see the AMCL documentation. In the following
OLQNV��\RX�FDQ�ÀQG�PRUH�LQIRUPDWLRQ�DERXW�LW��

�� http://www.ros.org/wiki/amcl

�� http://www.probabilistic-robotics.org/

The amcl node works mainly with laser scans and laser maps, but it could be
extended to work with other sensor data, such as a sonar or stereo vision. So for
this chapter, it takes a laser-based map and laser scans, and transforms messages
and generates a probabilistic pose. On startup, amcl�LQLWLDOL]HV�LWV�SDUWLFOH�ÀOWHU�
according to the parameters provided in the setup. If you don't set the initial
position, amcl will start in the origin of the coordinates. Anyway, you can set the
initial position in rviz using the 2D Pose Estimate button.

When we include the amcl_diff.launch�ÀOH��ZH�DUH�VWDUWLQJ�WKH�QRGH�ZLWK�D�VHULHV�
RI�FRQÀJXUHG�SDUDPHWHUV��7KLV�FRQÀJXUDWLRQ�LV�WKH�GHIDXOW�FRQÀJXUDWLRQ�DQG�WKH�
minimum setting to make it work.

Next, we are going to see the content of the amcl_diff.launch�ODXQFK�ÀOH�WR�H[SODLQ�
some parameters:

<launch>
<node pkg="amcl" type="amcl" name="amcl" output="screen">
 <!-- Publish scans from best pose at a max of 10 Hz -->
 <param name="odom_model_type" value="diff"/>
 <param name="odom_alpha5" value="0.1"/>
 <param name="transform_tolerance" value="0.2" />
 <param name="gui_publish_rate" value="10.0"/>
 <param name="laser_max_beams" value="30"/>
 <param name="min_particles" value="500"/>
 <param name="max_particles" value="5000"/>
 <param name="kld_err" value="0.05"/>
 <param name="kld_z" value="0.99"/>
 <param name="odom_alpha1" value="0.2"/>
 <param name="odom_alpha2" value="0.2"/>

Chapter 8

[�����]

 <!-- translation std dev, m -->
 <param name="odom_alpha3" value="0.8"/>
 <param name="odom_alpha4" value="0.2"/>
 <param name="laser_z_hit" value="0.5"/>
 <param name="laser_z_short" value="0.05"/>
 <param name="laser_z_max" value="0.05"/>
 <param name="laser_z_rand" value="0.5"/>
 <param name="laser_sigma_hit" value="0.2"/>
 <param name="laser_lambda_short" value="0.1"/>
 <param name="laser_lambda_short" value="0.1"/>
 <param name="laser_model_type" value="likelihood_field"/>
 <!-- <param name="laser_model_type" value="beam"/> -->
 <param name="laser_likelihood_max_dist" value="2.0"/>
 <param name="update_min_d" value="0.2"/>
 <param name="update_min_a" value="0.5"/>
 <param name="odom_frame_id" value="odom"/>
 <param name="resample_interval" value="1"/>
 <param name="transform_tolerance" value="0.1"/>
 <param name="recovery_alpha_slow" value="0.0"/>
 <param name="recovery_alpha_fast" value="0.0"/>
</node>
</launch>

The min_particles and max_particles parameters set the minimum and maximum
number of particles that are allowed for the algorithm. With more particles, you get
more accuracy, but this increases the use of the CPU.

The laser_model_type parameter�LV�XVHG�WR�FRQÀJXUH�WKH�ODVHU�W\SH��,Q�RXU�
case, we are using a likelihood_field parameter but the algorithm can also
use beam lasers.

The laser_likelihood_max_dist parameter is used to set the maximum distance
WR�GR�REVWDFOH�LQÁDWLRQ�RQ�WKH�PDS��ZKLFK�LV�XVHG�LQ�WKH�likelihood_field model.

The initial_pose_x, initial_pose_y, and initial_pose_a parameters are not
LQ�WKH�ODXQFK�ÀOH��EXW�WKH\�DUH�LQWHUHVWLQJ�EHFDXVH�WKH\�VHW�WKH�LQLWLDO�SRVLWLRQ�RI�
the robot when the amcl starts, for example, if your robot always starts in the dock
VWDWLRQ�DQG�\RX�ZDQW�WR�VHW�WKH�SRVLWLRQ�LQ�WKH�ODXQFK�ÀOH�

Perhaps you should change some parameters to tune your robot and make it work
ÀQH��,Q�WKH�ros.org�SDJH��\RX�KDYH�D�ORW�RI�LQIRUPDWLRQ�DERXW�WKH�FRQÀJXUDWLRQ�DQG�
the parameters that you could change.

Navigation Stack – Beyond Setups

[�����]

Avoiding obstacles
A great functionality of navigation stack is the recalculation of the path if it
ÀQGV�REVWDFOHV�GXULQJ�WKH�PRYHPHQW��<RX�FDQ�HDVLO\�VHH�WKLV�IHDWXUH�E\�DGGLQJ�
an object in front of the robot in Gazebo. For example, in our simulation we added
a big box in the middle of the path. The navigation stack detects the new obstacle
and automatically creates an alternative path.

,Q�WKH�QH[W�LPDJH��\RX�FDQ�VHH�WKH�REMHFW�WKDW�ZH�DGGHG��*D]HER�KDV�VRPH�SUHGHÀQHG�
3D objects that you can use in the simulations with mobile robots, arms, humanoids,
and so on.

To see the list, go to the Insert model section. Select one of the objects and then click
where you want to put it.

If you go to the rviz windows now, you will see a new global plan to avoid the
obstacle. This feature is very interesting when you use the robot in real environments
with people walking around the robot. If the robot detects a possible collision, it
will change the direction and it will try to arrive at the goal. You can see this feature
in the next image. Recall that the detection of such obstacles is reduced to the area
covered by the local planner costmap (for example, 4x4 meters around the robot).

Chapter 8

[�����]

Sending goals
We are sure that you have been playing with the robot by moving it around the map
a lot. This is funny but a little tedious and it is not very functional.

Perhaps you were thinking that it would be a great idea to program a list of
movements and send the robot to different positions with only a button, even
when we are not in front of a computer with rviz.

Okay, now you are going to learn how to do it using actionlib.

The actionlib package provides a standardized interface for interfacing with tasks.
For example, you can use it to send goals for the robot to detect something in a place,
make scans with the laser, and so on. In this section, we will send a goal to the robot
and we will wait for this task to end.

It could look similar to services, but if you are doing a task that has a long duration,
you might want the ability to cancel the request during the execution or get periodic
feedback about how the request is progressing, and you cannot do it with services.
Furthermore, actionlib creates messages (not services), and it also creates topics,
so we can still send the goals through a topic without taking care of the feedback
and result, if we do not want.

Navigation Stack – Beyond Setups

[�����]

7KH�QH[W�FRGH�LV�D�VLPSOH�H[DPSOH�WR�VHQG�D�JRDO�WR�PRYH�WKH�URERW��&UHDWH�D�QHZ�ÀOH�
in the chapter8_tutorials/src�IROGHU�DQG�DGG�WKH�IROORZLQJ�FRGH�LQ�D�ÀOH�ZLWK�WKH�
name sendGoals.cpp:

#include <ros/ros.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>
#include <tf/transform_broadcaster.h>
#include <sstream>

typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction>
MoveBaseClient;

int main(int argc, char** argv){
 ros::init(argc, argv, "navigation_goals");

 MoveBaseClient ac("move_base", true);

 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Waiting for the move_base action server");
 }

 move_base_msgs::MoveBaseGoal goal;

 goal.target_pose.header.frame_id = "map";
 goal.target_pose.header.stamp = ros::Time::now();

 goal.target_pose.pose.position.x = 1.0;
 goal.target_pose.pose.position.y = 1.0;
 goal.target_pose.pose.orientation.w = 1.0;

 ROS_INFO("Sending goal");
 ac.sendGoal(goal);

Chapter 8

[�����]

 ac.waitForResult();

 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
 ROS_INFO("You have arrived to the goal position");
 else{
 ROS_INFO("The base failed for some reason");
 }
 return 0;
}

%HIRUH�ZH�FRPSLOH��DGG�WKH�IROORZLQJ�GHSHQGHQFLHV�LQWR�WKH�PDQLIHVW�ÀOH�

 <depend package="move_base_msgs" />
 <depend package="actionlib" />
 <depend package="geometry_msgs" />
 <depend package="tf" />

Add the�QH[W�ÀOH�LQ�WKH�CMakeList.txt�ÀOH�WR�JHQHUDWH�WKH�H[HFXWDEOH�IRU�RXU�SURJUDP��

rosbuild_add_executable(sendGoals src/sendGoals.cpp)

Now, compile the package with the following command:

$ rosmake chapter8_tutorials

And launch everything to test the new program. Use the next command to launch all
WKH�QRGHV�DQG�WKH�FRQÀJXUDWLRQV�

$ roslaunch chapter8_tutorials chapter8_configuration_gazebo.launch

$ roslaunch chapter8_tutorials move_base.launch

2QFH�\RX�KDYH�FRQÀJXUHG�WKH��'�SRVH�HVWLPDWH��UXQ�WKH�sendGoal node with the
next command in a new shell:

$ rosrun chapter8_tutorials sendGoal

Navigation Stack – Beyond Setups

[�����]

If you go to the rviz screen, you will see a new Global Plan (green line) over the
map. This means that the navigation stack has accepted the new goal and it will
start to execute it.

When the robot arrives at the goal, you will see the next message on the shell where
you ran the node:

[INFO] [...,...]: You have arrived to the goal position

You can do a list of goals or waypoints and make a route for the robot. This way
you can program missions, guardian robots, or bring things from other rooms with
your robot.

Chapter 8

[�����]

6XPPDU\
At the end of this chapter, you should have a robot—simulated or real—moving
autonomously through the map (which models the environment) using the navigation
stack. You can program the control and the localization of the robot by following
the ROS philosophy of code reusability, so that you can have the robot completely
FRQÀJXUHG�ZLWKRXW�PXFK�HIIRUW��7KH�PRVW�GLIÀFXOW�SDUW�RI�WKLV�FKDSWHU�LV�WR�XQGHUVWDQG�
all the parameters and learn how to use each one of them appropriately. The correct
XVH�RI�WKHP�ZLOO�GHWHUPLQH�ZKHWKHU�\RXU�URERW�ZRUNV�ÀQH�RU�QRW��IRU�WKLV�UHDVRQ��\RX�
must practice changing the parameters and look for the reaction of the robot.

In the next chapter, you will see some robots that you can download and simulate
on ROS. These robots have 3D models and they can be used in Gazebo for simulation.
Some of them have the navigation stack implemented, and you will learn how to use
it and play with them. It should not be a problem for you because you have all the
knowledge to program something similar and launch the system and localize errors
DQG�À[�WKHP�

Combining Everything –
Learn by Doing

:H�ZLOO�ÀQLVK�WKLV�ERRN�E\�VKRZLQJ�KRZ�WR�ZRUN�ZLWK�real robots, which are
regularly used by research groups and robotic companies worldwide. Several of
these groups and companies have already ported the software of their robots to the
ROS framework, and they have made the ROS packages for their robots publicly
available. As we will see in the following sections, these packages usually comprise
VHYHUDO�VWDFNV��FRYHULQJ�WKH�QDYLJDWLRQ��WKH�URERW�VSHFLÀF�GULYHUV��WHOHRSHUDWLRQ��DQG�
the robot URDF model for the simulation in Gazebo.

Here we will show you how to install the packages for the most known robots, and
work with them in simulation. Note that most of these robots are very expensive,
but you can develop for them and contribute your algorithms to the manufacturers.
Anyway, in some cases the robots are affordable by the amateur user, like in the case
of the turtlebot based on the roomba. Nevertheless, you will be able to run and work
with all the robots listed here with a single PC and your ROS installation with the
navigation stack and Gazebo.

For each robot covered in this chapter, we will include a brief description of the robot
features, the company that develops it, and the links to the sources, which are the ROS
packages. Then, we will show the installation steps, probably with some advice for a
given ROS distribution. Once the system is installed, we will run a few examples of the
robot running and doing some ground-breaking stuff. In all cases, the "hello world"
example will consist of loading the URDF model of the robot on Gazebo. Then, we
will show how to move it, navigate it in the simulated environment, and access its
simulated sensors and actuators, specially manipulators and arms.

Combining Everything – Learn by Doing

[�����]

The outline of this chapter will cover the following robots and demos:

�� The REEM from PAL Robotics, in particular the REEM-H, is a wheeled
differential platform humanoid robot. We will also introduce other robots
from this company, such as the biped REEM-C. We will show how to install
the public code of these robots and navigate the REEM-H in simulation.

�� The PR2 from Willow Garage, the original maintainers and developers of
526��:H�ZLOO�VHH�KRZ�WR�LQVWDOO�WKH�URERW�DORQJ�ZLWK�WKH�RIÀFLDO�UHSRVLWRULHV�
and how to navigate it in Gazebo, selecting different parts of the vehicle. We
will also show how to build a map in order to do mapping as we showed in
the previous two chapters. Finally, some demos are enumerated.

�� The Robonaut 2, or simply R2, is a dexterous humanoid of NASA. We will
show how to install, load the robot in simulation, move the arms, and also play
with several options to see the legs, the ISS environment, and much more.

�� The Husky rover from Clearpath Robotics is a 4-wheel outdoors ground
vehicle. We will show how to install and run it in simulation.

�� :H�ZLOO�ÀQLVK�ZLWK�WKH�7XUWOH%RW��D�ORZ�FRVW�PRELOH�URERW�RI�<XMLQ�5RERW�
and iRobot, which is one of the most affordable vehicles to start with in
robotics. We will see how to run it inside Gazebo, after installing from the
RIÀFLDO�UHSRVLWRU\�

You will see that for some robots we will advise to use ROS Groovy instead of
ROS Fuerte, which has been the distribution used through the entire book. We have
already used Groovy for some particular parts, because they were quite recent and
better supported in Groovy. Here, the same thing happens. For many robots, the best
support is found in Groovy, although in Fuerte you might also be able to run them.
Anyway, you already know how to install ROS, and installing Groovy is the same
DV�)XHUWH��DV�ZH�H[SODLQHG�LQ�WKH�ÀUVW�FKDSWHU��\RX�RQO\�KDYH�WR�VHOHFW�ros-groovy-*
in the Debian packages of Ubuntu. Moreover, you also know how to call the setup.
bash�ÀOH�RI�WKH�GLVWUR�\RX�ZDQW�WR�XVH�IURP�WKH�.bashrc�ÀOH��DV�\RX�FDQ�DFWXDOO\�
have both distribution packages installed in your machine.

5((0�±�WKH�KXPDQRLG�RI�3$/�5RERWLFV
REEM is a 1.65m humanoid service robot created by PAL Robotics. This robot is one
of several humanoid robots developed by the company. In brief, it designs two kinds
of humanoids: bipeds and differential drive robots. REEM is the last version of their
differential driver robots and it is one of the state-of-the-art robots of its kind. It has an
autonomous navigation system, a user-friendly touchscreen on the chest for Human
Robot Interaction (HRI), and it incorporates a voice and face recognition system.

Chapter 9

[�����]

REEM is meant to help and entertain people in most public environments such
as hotels, museums, shopping malls, airports, and hospitals. It can also transport
small packages, and operate as a dynamic information point offering a great variety
of multimedia applications such as display an interactive map of the surrounding
area, call up a variety of information (weather, nearby restaurants, airlines' travel
schedule, and so on), and offer tele-assistance via video-conferencing, according
to their website http://pal-robotics.com/robots.

PAL Robotics (http://pal-robotics.com) is a company under the umbrella of
the Abu Dhabi based Royal Group. It is an R&D company with the ultimate goal of
EXLOGLQJ�WKH�LGHDO�URERW�IRU�HYHU\ERG\
V�XVH��7KHLU�ÀUVW�URERW�ZDV�WKH�ELSHG�URERW�
REEM-A��WKDW�ZDV�ÀQLVKHG�LQ�������,W�SDUWLFLSDWHG�LQ�WKH������5RER&XS�FRPSHWLWLRQ�
and won the walking competition. REEM-B is the second biped developed by the
company and recently they have developed REEM-C. All these three robots are
shown from the left- to the right-hand side in the following picture. They have also
designed two differential drive humanoids—with a mobile wheel base— REEM-H1
EHLQJ�WKH�ÀUVW�RI�WKHP�

Combining Everything – Learn by Doing

[�����]

REEM-H1, shown in the following picture (on the right-hand side), is the predecessor
of the last designed robot called REEM, as shown in the previous image.

You can see the robots and products of PAL Robotics on their homepage, as well as
the news and events of the company such as public demos or conferences, on their
blog—http://www.pal-robotics.com/blog/. Similarly, they offer the software as a
set of open source ROS packages: http://pal-robotics.com/software. From this
link of the software section, we jump to the GitHub repository of PAL Robotics robots;
GitHub is a web host that hosts several git repositories, which offers easy access to
them. In the next section we explain how to install it and what they provide in each
stack hosted in the repository.

,QVWDOOLQJ�5((0�IURP�WKH�RI¿FLDO�UHSRVLWRU\
If you visit the link https://github.com/pal-robotics, you will see a number
of stacks that comprise the whole system to integrate the REEM robot in ROS. The
easiest way to install all the stacks is by using the rosinstall�ÀOHV�WKDW�DUH�LQVLGH�WKH�
pal-ros-pkg repository. Before that, we must install some dependencies. In brief, we
need the standalone version of the Gazebo simulator, as the one that comes with ROS
is older than the one used by REEM. To install the standalone version of gazebo, we
must add the Ubuntu repositories that host it. As it is maintained by the OSRF, we set
up the packages.osrfoundation.org sources as follows (select your Ubuntu distro
accordingly and note that we use quantal in this example):

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu
quantal main" > /etc/apt/sources.list.d/gazebo-latest.list'

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add
-

Chapter 9

[�����]

Update the system package list as follows:

sudo apt-get update

And install Gazebo as shown:

sudo apt-get install gazebo

Finally, source the setup.sh of gazebo in your .bahrc�ÀOH�

echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc

source ~/.bashrc

For your convenience, we have all these steps in the scripts folder of the code that
comes with this chapter. Just run the following to install Gazebo:

./gazebo_install.sh

The second dependency is actually part of the drcsim simulator, but we do not
need it completely. We only need the OSRF common libraries. In order to install
them, move to your ROS_PACKAGE_PATH package and download the source from
their repository with another control version system, such as cvs, subversion,
or git (note that you need mercurial in order to use hg).

hg clone https://bitbucket.org/osrf/osrf-common

Now build and install it system-wide as follows:

cd osrf-common

mkdir build

cd build

cmake ..

make

sudo make install

Again, for your convenience, all these steps are accomplished by the next script:

./osrf_common_install.sh

The rest of the dependencies can be installed easily with apt-get:

sudo apt-get install ros-groovy-pr2-simulator

sudo apt-get install libglew-dev libdevil-dev

Combining Everything – Learn by Doing

[�����]

Note that we have used ROS Groovy in the previous commands. ROS Fuerte should
work as well, but the developers of REEM are currently porting the source code to
Groovy in this repository, so it is safer to use Groovy, as otherwise some parts might
not compile or may crash.

Basically, we need the simulator libraries that come for the PR2, but we do not need
the PR2 at all, only those libraries.

At this point, we must add some environment variables to our .bashrc�ÀOH��-XVW�
FRS\�WKLV�DW�WKH�HQG�RI�WKH�ÀOH�

Gazebo - atlas_msgs; not required if drcsim is installed

export GAZEBO_PLUGIN_PATH="`rospack find atlas_msgs`/lib:$GAZEBO_PLUGIN_
PATH"

export LD_LIBRARY_PATH="`rospack find atlas_msgs`/lib:$LD_LIBRARY_PATH"

Gazebo - PAL

export GAZEBO_PLUGIN_PATH="`rospack find pal_gazebo_plugins`/lib:$GAZEBO_
PLUGIN_PATH"

export LD_LIBRARY_PATH="`rospack find pal_gazebo_plugins`/lib:$LD_
LIBRARY_PATH"

Gazebo - REEM-H3

export GAZEBO_MODEL_PATH="`rospack find reem_gazebo`/models:$GAZEBO_
MODEL_PATH"

export GAZEBO_RESOURCE_PATH="`rospack find reem_gazebo`/worlds:$GAZEBO_
RESOURCE_PATH"

)RU�\RXU�FRQYHQLHQFH��WKHVH�HQYLURQPHQW�YDULDEOHV�DUH�LQ�WKH�ÀOH�environment/pal_
ros_pkg_environment.sh, so just do as follows:

cat scripts/environment/pal_ros_pkg_environment.sh >> ~/.bashrc

Now, we have all the dependencies installed and the environment correctly set
up. Move to your ROS_PACKAGE_PATH and create a new folder that will contain all
the stacks for the REEM robot. We will use the ros-pal-pkg folder. Go inside this
directory and just run the following:

rosinstall . https://raw.github.com/pal-robotics/pal-ros-pkg/master/pal-
ros-pkg-gazebo-standalone.rosinstall

Chapter 9

[�����]

This will download all the repositories containing the stacks for REEM; this folder
(ros-pal-pkg) can be omitted but this way it will be easier to know which are the
repositories (and the stacks and packages) of REEM, because there are quite a lot.
Note that we are using the Gazebo-standalone rosintall�ÀOH��VLQFH�ZH�KDYH�DOUHDG\�
installed gazebo as a standalone package on the system; there is a version that tries
to use the Gazebo binaries that comes with the ROS distro, but it is unstable.

Once everything has been downloaded, we must update the environment before we
install anything, so just do as follows:

rosstack profile && rospack profile

source ~/.bashrc

Now we can install every stack, one after the other. You can do it with this
bash snippet:

stacks=(atlas_msgs pal_gazebo_plugins pal_image_processing perception_
blort reem_arm_navigation reem_common reem_controllers reem_kinematics
reem_msgs reem_robot reem_simulation)

for stack in ${stacks[@]}

do

 rosmake -i $stack

done

Now you have the REEM software installed on the system. All the previous
commands are compiled in a script. Although it is not intended for system-wide
installation, you could just run the following:

./pal_ros_pkg_install.sh

From all the stacks installed, the most important ones are reem_simulation,
reem_teleop and reem_arm_navigation, which allow simulating the robot in
Gazebo and teleoperating the base and the arms.

Combining Everything – Learn by Doing

[�����]

5XQQLQJ�5((0�XVLQJ�WKH�*D]HER�VLPXODWRU
The REEM sources include a launch ÀOH�WR�ORDG�LW�LQ�*D]HER��You only have to run
the following code and you will see REEM in an empty environment in Gazebo, as
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�WKDW�DOVR�LQFOXGHV�WKH�QRGH�JUDSK�XVLQJ�rxgraph:

roslaunch reem_gazebo reem_empty_world.launch

In the screenshot you can observe REEM has two frontal range lasers. One pointing
forward with a large range and another slightly tilted down. We could load any
environment we want in Gazebo and use the navigation stack to make the robot
move through the simulated environment, as discussed in previous chapters.

If you experience any problem when launching REEM in Gazebo, it may be related to
the version of Gazebo being used. In that case, try some of the precompiled binaries of
Gazebo available at http://gazebosim.org/assets/distributions/; for instance,
Version 1.6.2 should work, although newer versions are supported as well.

,Q�RUGHU�WR�WHOHRSHUDWH�WKH�URERW�ZH�FDQ�XVH�WKH�ODXQFK�ÀOH�RI�WKH�7XUWOH%RW��DV�5((0�
is compatible with it. If you do not have the TurtleBot installed yet, just install it with
the following command:

sudo apt-get install ros-groovy-turtlebot ros-groovy-turtlebot-apps

Then, just run the following command:

rosrun turtlebot_teleop turtlebot_teleop_key

Chapter 9

[�����]

Run the following command in order to relay the velocity commands to REEM:

rosrun topic_toolrelay turtlebot_teleop/cmd_vel cmd_vel

Use the keyboard to move the robot. At the same time you can run rviz to visualize
the robot sensors, as shown�LQ�WKH�QH[W�ÀJXUH��LQ�cfg there is a reem.rviz�ÀOH�WR�VHW�
up the rviz interface for REEM):

Similarly, apart from the URDF model, we can see all the TF and frames of REEM,
DV�VKRZQ�LQ�WKH�QH[W�ÀJXUH�

Combining Everything – Learn by Doing

[�����]

Finally, the following screenshot shows the robot after moving to create a map of
the world simulated in Gazebo. At this point, in the screenshot we see the robot
navigating in the map built, using the path planners available in ROS and the
particles that estimate the robot localization within the map.

35��±�WKH�:LOORZ�*DUDJH�URERW
PR2 is the mobile manipulation robot developed by Willow Garage, the developers
of ROS. The robot is equipped with two arms and a head with stereo cameras for
long and short distances, as well as a tilting laser.

Chapter 9

[�����]

,QVWDOOLQJ�WKH�35��VLPXODWRU
We can install R2 using a Debian binary directly with the following command:

sudo apt-get install ros-fuerte-nasa-r2-simulator

Alternatively, we can install from sources by following these instructions.

To use the PR2 simulator, which uses Gazebo and the URDF model of the PR2
robot, just run the following:

sudo apt-get install ros-groovy-pr2-simulator

This will install several stacks and packages that allow you to move the robot and
control its arms. This functionality is required by some demos not included in this
book, for example, one that shows how to open doors with the PR2 robot.

Note that for the PR2 we also require ROS Groovy, although you can try other
distributions. Even more important is to use a new version of Gazebo and check
that it runs correctly, at least outside ROS, by running the following:

gazebo

What happens is that the newest versions of Gazebo are actually included in the
newest distributions of ROS. So that is the easiest way to install it and to obtain
the best integration among them.

5XQQLQJ�35��LQ�VLPXODWLRQ
Here we will see how to run the simulator and see the PR2 model, as well as
moving the base and the arms. We can simply run load PR2 in the empty world
in Gazebo with:

roslaunch pr2_gazebo pr2_empty_world.launch

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support�DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX��
<RX�FDQ�DOVR�GRZQORDG�WKHVH�FRGH�ÀOHV�IURP�https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Combining Everything – Learn by Doing

[�����]

Similarly, we can launch the PR2 alone or in other worlds using the several launch
ÀOHV�LQ�WKH�launch folder inside the pr2_gazebo package. For the empty world we
will see the robot as shown in the following screenshot:

1RWH�WKDW�*D]HER�LV�DOUHDG\�UXQQLQJ�VRPH�ODXQFK�ÀOHV�WKDW�DUH�UHTXLUHG��,W�LV�ZRUWK�
mentioning that we can load the robot without the arms, which can reduce the
system load if we are not going to use them. In order to run PR2 without arms run
the following command:

roslaunch pr2 pr2_no_arms_empty_world.launch

7KLV�XVHV�WKH�ODXQFK�ÀOH�LQ�WKH�chapter9_tutorials, which has the following script
(based on pr2_empty_world.launch):

<launch>
 <!-- start up empty world -->
 <arg name="gui" default="true"/>
 <arg name="throttled" default="false"/>
 <arg name="paused" default="true"/>

 <include file="$(find gazebo_worlds)/launch/empty_world_paused.
launch">
 <arg name="gui" value="$(arg gui)" />
 <arg name="throttled" value="$(arg throttled)" />

Chapter 9

[�����]

 <arg name="paused" value="$(arg paused)" />
 </include>

 <!-- start pr2 robot w/o arms -->
 <include file="$(find pr2_gazebo)/launch/pr2_no_arms.launch"/>
</launch>

We will see the following in Gazebo:

In order to move (teleoperate) the PR2, we will launch the simulation:

roslaunch pr2_gazebo pr2_empty_world.launch

We then teleoperate the robot with the keyboard or the joystick using one of the
nodes provided with this Debian package:
sudo apt-get install ros-groovy-pr2-teleop-app

If you use the keyboard, run:
rosrun pr2_teleop teleop_pr2_keyboard

You also have�D�QRGH�IRU�D�MR\VWLFN��DQG�ODXQFK�ÀOHV�WKDW�LQFOXGH�HDFK�RI�WKHVH�QRGHV�

We have to connect the /cmd_vel topic with the PR2 /base_controller/command,
as follows:
rosrun topic_tools relay /cmd_vel /base_controller/command

Combining Everything – Learn by Doing

[�����]

We can check that the velocity commands are received by the robot by echoing the
Twist messages:

rostopic ho /base_controller/command

The moving robot is shown in the following screenshot:

Finally, we can visualize the robot in rviz, using the /odom_combined frame, as
shown in the following screenshot:

Chapter 9

[�����]

PR2 is perfectly integrated with the ROS navigation stack, so we can load a world in
Gazebo and localize the robot using amcl, as well as mapping, while the robot moves
on a given goal for the path planner.

/RFDOL]DWLRQ�DQG�PDSSLQJ
Given a world in simulation, we can map it and localize the robot within it. There
are several models and worlds available at the following link: http://gazebosim.
org/models/.

We can reference them in�WKH�ZRUOG�ÀOH��DQG�WKH\�ZLOO�EH�DXWRPDWLFDOO\�GRZQORDGHG�
into our .gazebo home folder (at $HOME). Then we can also insert them manually.
Alternatively we can design our own world in Gazebo, in Building Editor. We are
going to use the simple room shown as follows:

Combining Everything – Learn by Doing

[�����]

More complex worlds already exist and can be used, but it will take more time
to map them completely. See the example of the Willow Garage world as follows,
for instance, which is loaded in Gazebo with the following:

roslaunch pr2_gazebo pr2_wg_world.launch

Our simple room world is saved as a .sdf�ÀOH�WKDW�ZH�VDYH�DV�D�ZRUOG�ÀOH
for convenience; otherwise it will be a model that we could spawn in Gazebo.
:H�SURYLGH�D�ODXQFK�ÀOH�WR�ORDG�WKH�ZRUOG�

roslaunch pr2 simple_world.launch

Also one to spawn the PR2 robot model into the world (note that you might
see some rendering artifacts in some versions of Gazebo, but everything should
work correctly):

roslaunch pr2 pr2_no_arms_simple_world.launch

Chapter 9

[�����]

Now we need a map to navigate the environment. We are going to use the gmapping
DOJRULWKP�WR�GR�VR��5XQ�WKH�IROORZLQJ�ODXQFK�ÀOH��SURYLGHG�ZLWK�WKH�ERRN�

roslaunch pr2 pr2_mapping.launch

It simply loads the previous world and the gmapping�QRGH�XVLQJ�D�ODXQFK�ÀOH�
that comes with this package for the PR2 robot, with the appropriate tuning of
the algorithm parameters.

1RZ��ZH�PXVW�PRYH�WKH�URERW�PDQXDOO\��8VH�WKH�IROORZLQJ�ODXQFK�ÀOHV�WR�GR�VR��
whether you use a joystick or the keyboard, respectively, choose one.

roslaunch pr2_teleop teleop_joystick.launch

roslaunch pr2_teleop teleop_keyboard.launch

You can see how the map is built in rviz��ZH�UXQ�LW�IURP�WKH�ODXQFK�ÀOH�WR�VWDUW�LW�
ZLWK�DQ�DGHTXDWH�FRQÀJXUDWLRQ�WR�VHH�WKH�PDS�ZKLOH�LW�LV�EHLQJ�EXLOW��2QFH�WKH�PDS�LV�
EXLOW�DQG�\RX�DUH�VDWLVÀHG�ZLWK�WKH�UHVXOW��\RX�FDQ�VDYH�WKH�PDS�ZLWK�WKH�IROORZLQJ�

rosrun map_server_map_saver

Combining Everything – Learn by Doing

[�����]

This will create a map.yaml and a map.pgm�ÀOH��ZKLFK�KDYH�WKH�PDS�FKDUDFWHULVWLFV�
and the map as an image in the same format of an Occupancy Grid Map (OGM).
7KH�ÀOHV�DUH�FUHDWHG�LQ�WKH�FXUUHQW�IROGHU��DQG�WKHQ�\RX�FDQ�PRYH�WKHP�WR�WKH�maps
folder in the pr2�IROGHU�RI�WKLV�FKDSWHU��7KHUH�\RX�ZLOO�VHH�WZR�ÀOHV�WKDW�FRPH�ZLWK�
WKH�ERRN��ZKLFK�ZHUH�FUHDWHG�IRU�\RXU�FRQYHQLHQFH��7KHVH�ÀOHV�DUH�XVHG�IRU�WKH�QH[W�
part: the localization.

For the robot localization, and path planning we use the Adaptive Monte Carlo
Localization (AMCL) and the move_base package, along with costmap_2d, which
provides the costmap of the surrounding area that allows the robot to move without
crashing into the obstacles in the environment.

<RX�FDQ�UXQ�WKH�IROORZLQJ�ODXQFK�ÀOH�ZKLFK�ZLOO�DXWRPDWLFDOO\�ORDG�WKH�PDS�EXLOW�
previously, as long as it is in the maps folder.

roslaunch pr2 pr2_navigation.launch

This runs the map_server node with the maps/map.yaml�ÀOH��amcl, and the move_
base nodes.

5XQQLQJ�WKH�GHPRV�RI�WKH�35��VLPXODWRU
Once we have a map and we are able to localize and move within the map, we can
run some demos provided for the PR2. These demos comprise some tasks such as
grasping and interacting with the environment.

You can open doors with the PR2, see how the robot plugs itself in to the electric
supply, or just see it grasping objects from a table. Just apply all you have learned
in this book and follow the instructions given in the following links:

�� http://ros.org/wiki/pr2_simulator/Tutorials/PR2OpenDoor/
diamondback

�� http://ros.org/wiki/pr2_simulator/Tutorials/PR2PluggingIn

�� http://ros.org/wiki/pr2_simulator/Tutorials/SimpleGraspingDemo

In some cases you will have to download the sources and compile them, but you can
also install the Willow Garage PR2 applications:

sudo apt-get install ros-groovy-wg-pr2-apps

It includes some of the examples listed previously, among others.

Chapter 9

[�����]

5RERQDXW���±�WKH�GH[WHURXV�KXPDQRLG�RI�
NASA
Robonaut 2, or R2 for short, is the second version of the dexterous humanoid robot
developed by NASA. This robot is meant to help humans work in space. Its main
feature is the ability to perform dexterous manipulation. The agency has built four
robonauts at the time of writing this book. Here we present R2, which is supported
in simulation inside ROS, using the software available online.

The R2 shown in the previous picture was launched to the International Space Station
�,66��DV�SDUW�RI�WKH�676�����PLVVLRQ��DQG�LW�LV�WKH�ÀUVW�URERW�RI�LWV�NLQG�LQ�VSDFH��,W�LV�
LPSRUWDQW�WR�QRWH�WKDW�5��LV�GHSOR\HG�RQ�D�À[HG�SHGHVWDO�LQVLGH�WKH�,66��DV�ZH�ZLOO�
see in the simulation environments in the sequel. However, other robonauts will be
attached to a four-wheeled vehicle, or will have legs in the future.

,QVWDOOLQJ�WKH�5RERQDXW���IURP�WKH�VRXUFHV
First of all, we must download the sources, which are in several repositories in
bitbucket. We have two options. One consists of downloading each repository
separately, as follows:

�� git clone https://bitbucket.org/nasa_ros_pkg/nasa_rosdep.git

�� git clone https://bitbucket.org/nasa_ros_pkg/nasa_r2_common.git

�� git clone https://bitbucket.org/nasa_ros_pkg/nasa_r2_simulator.
git

The other option uses rosinstall, which actually performs the three operations
mentioned. For ROS Groovy we will simply run the following code:

Rosinstall . https://bitbucket.org/nasa_ros_pkg/misc/raw/master/nasa-ros-
pkg.rosinstall

Combining Everything – Learn by Doing

[�����]

In any case, do not forget to update the stacks and packages databases:

rosstack profile && rospack profile

Once we have downloaded the R2 sources, we proceed to compile them:

roscd nasa_r2_simulator

You can use the master branch, but in case you are using ROS Groovy, you will need
to use the groovy branch, so run the following:

git checkout groovy

Then you can build the code as follows:

rosmake

This will compile the R2 simulator, which depends on several packages from this
and the other stacks (contained in each of the repositories downloaded).

5XQQLQJ�5RERQDXW���LQ�WKH�,66�¿[HG�SHGHVWDO
The most basic example launches the Gazebo simulator with the R2 in an empty
environment.

roslaunch r2_gazebo r2_empty.launch

You will see the R2 in the Gazebo empty world, as shown in the following picture:

Chapter 9

[�����]

&RQWUROOLQJ�WKH�5RERQDXW���DUPV
7KH�ÀUVW�WKLQJ�ZH�PXVW�GR�LV�SXW�WKH�URERW�LQ�WKH�UHDG\�SRVLWLRQ�

rosrun r2_controllers_gazebo r2_readypose.py

Then we can choose between the two arm control models, which are common for
every robotic arm.

�� Joint mode: We set the angle of each joint individually.
�� Cartesian mode: We give the desired pose of a link, for example, the

end effector, and the driver solves the inverse kinematics to obtain the
appropriate joint state that allows the link to be at such a pose, as long
as it is actually feasible.

By default, the robot starts in joint mode, but it is easy to change between modes.
To enter the Cartesian mode, just run the following:

rosservice call /r2_controller/set_tip_name <arm_name> <link_name>

Here arm_name is either left or right, and link_name is any link in the respective
DUP�FKDLQ��)RU�H[DPSOH��WKH�OHIW�PLGGOH�ÀQJHU�LV�WKH�OLQN�left_middle_base.

Similarly, to enter the joint mode, just run:

rosservice call /r2_controller/set_joint_mode <arm_name>

Then, when we are in each of the modes, we can control the arm pose using topics.
In the case of the joint mode, we can publish JointState to either of these topics,
which correspond to the left and right arm respectively.

/r2_controller/left_arm/joint_command

/r2_controller/right_arm/joint_command

The head and waist are controlled solely with JointState. On one side, the head
is a pan-tilt device, which can be controlled with the topic /r2_controller/
neck/joint_command; meanwhile, the waist is accessed through the topic /r2_
controller/waist/joint_command.

&RQWUROOLQJ�WKH�URERW�HDVLO\�ZLWK�LQWHUDFWLYH�PDUNHUV
7KH�PRVW�ÁH[LEOH�ZD\�WR�control the robot is using interactive markers within rviz.
With the R2 simulator (Gazebo) running, open rviz:

rosrun rviz rviz

Combining Everything – Learn by Doing

[�����]

And then, open the interactive control teleoperator:

rosrun r2_teleop r2_interactive_control.py

You can use the vcg�ÀOH�SURYLGHG�ZLWK�WKH�ERRN�LQ�r2/config to set up rviz
appropriately for the Robonaut 2 and Interactive Markers. You can see two
positions of the arms in the following screenshot:

And with the interactive markers we have the following image:

Chapter 9

[�����]

We observe the interactive markers that we can control directly in rviz, which allow
us to give the desired position of the hands, and by inverse kinematics of the arm
chain the joint's state is obtained so the arm reaches the desired pose.

*LYLQJ�OHJV�WR�5RERQDXW��
In simulation we can see the legged version of R2, or simply the legs. The full body is
launched with the following:

roslaunch r2_gazebo r2c_full_body.launch

If you prefer to work with the legs only, just run the following:

roslaunch r2_gazebo r2c_legs.launch

These legs are the R2 IVA climbing legs of a real Robonaut model.

Combining Everything – Learn by Doing

[�����]

The Robonaut 2 comes with several Gazebo plugins for this purpose. They are
automatically loaded/used by gazebo.

/RDGLQJ�WKH�,66�HQYLURQPHQW
We can also load the ISS environment along with R2:

roslaunch r2_gazebo r2_ISS.launch

You will see the R2 on the pedestal inside of the ISS world loaded in Gazebo,
as shown in the following screenshot:

Chapter 9

[�����]

This may consume many resources in your system, so you can load only the ISS Task
Board with the following:

roslaunch r2_gazebo r2_taskboard.launch

In the following screenshot you can see the R2 with the Task Board only, which is
actually the one we have in the ISS world, but without the rest of the elements of
the ISS model:

Husky – the rover of Clearpath Robotics
The Husky A200 is an Unmanned Ground Vehicle (UGV) developed by Clearpath
Robotics, one of the spin-off companies of Willow Garage. As we can see in the
following picture, it is a rugged, outdoor vehicle, which is equipped with an Axis
camera, GPS, and integrates the ROS framework:

Combining Everything – Learn by Doing

[�����]

,QVWDOOLQJ�WKH�+XVN\�VLPXODWRU
Here we focus on running Husky on simulation, so just run the following:

sudo apt-get install ros-groovy-husky-simulator

Alternatively, you can clone the repository in order to have the latest version:

git clone git://github.com/clearpathrobotics/husky_simulator.git

5XQQLQJ�+XVN\�RQ�VLPXODWLRQ
We load an empty map in Gazebo:

roslaunch husky_gazebo map_empty.launch

Now just load Husky with the following:

roslaunch husky_gazebo husky_base.launch

This can also be done manually within Gazebo. You will see the robot as shown in
the following screenshot:

Chapter 9

[�����]

Then, we can use the PR2 tele-operation node to move it, so just run the following:

rosrun pr2_teleop teleop_pr2_keyboard

Note that the Husky robot is not holonomic, so it cannot move laterally. Therefore, if
you press the keys A or D, it will not move. The next screenshot shows Husky after
moving it.

Now, as Husky integrates with the navigation stack, you can localize it, map a
simulated world, and navigate through it. You only have to apply what you have
learned in this book.

Combining Everything – Learn by Doing

[�����]

7XUWOH%RW�±�WKH�ORZ�FRVW�PRELOH�URERW
TurtleBot integrates in several simple and low-cost state-of-the-art hardware devices
such as Microsoft's Kinect sensor, Yujin Robot's Kobuki, and iRobot's Create. It
is a moving platform intended for indoor environments and with 3D perception
capabilities by means of the Kinect. It is also easy to include more devices or even
use with our own laptop to test our software, as it has several platforms at different
heights, as the next picture shows:

,QVWDOOLQJ�WKH�7XUWOH%RW�VLPXODWLRQ
The simulator of the TurtleBot does not come with the ROS repositories, so clone
the turtlebot_simulator repository:

git clone https://github.com/turtlebot/turtlebot_simulator.git

Use the master branch or move to the correct one for your ROS distro. For example,
for ROS Groovy do the following:

git checkout groovy

Now, build the sources:

rosmake

Chapter 9

[�����]

5XQQLQJ�7XUWOH%RW�RQ�VLPXODWLRQ
To run TurtleBot in the empty world run the following code:

roslaunch turtlebot_gazebo turtlebot_empty_world.launch

As you see, the typical standard is followed since the robot can be spawned in a
gazebo�ZRUOG�XVLQJ�WKH�ODXQFK�ÀOHV�LQ�WKH�<robot_name>_gazebo package. As with
the other robots, now you can perform mapping, localization, and navigation tasks
with it, as well as inspecting virtual worlds with the sensors of the robot.

6XPPDU\
In this chapter we have seen several real robots from international companies and
how to work with them in simulation. Here you can use all the background learnt in
all the previous chapters of this book. Now you can play with almost the same tools
and robots that the most important robotics institutions and companies develop.

We have shown several humanoid robots, such as REEM, PR2, and Robonaut. These
robots allow you to grasp objects, since they incorporate arms in the torso. Similarly,
they can move the head and you can focus on particular zones of the environment.
All three include wheeled-driven robots, holonomic or not, and the developers of
REEM and Robonaut also have biped robots. Indeed, REEM-C and R2 are legged
robots that can walk.

Later we have shown other robotic platforms that only include a base with wheels
and probably some supporting structures to attach sensors or an external laptop.
This is the case of Husky and TurtleBot. In fact, TurtleBot is one of the cheapest
robots of its kind. Here you have learned how to run it in simulation, but you might
also buy one and do SLAM, localization, path planning, and all the exciting things
you have learnt in this book. You do not need anything else.

Now is your turn to do ground-breaking stuff with your own robots or with the
most popular ones, which are already integrated in ROS, as you have seen here.
Happy robot programming!

Index
6\PEROV
2D nav goal 258
2D pose estimate 257
3D viewing

Kinect sensor, using 116
3D visualization

about 91
frame 94
frame transformations, visualizing 94, 96
rviz, using 92, 93
topics 94

10DOF sensor
ROS node, creating 138, 139

*-ros-pkg package 9

A
Adaptive Monte Carlo Localization. See

AMCL
ADXL345 sensor 134
AMCL

about 266, 292
FRQÀJXUDWLRQ�RSWLRQV�����
initial_pose_a parameter 267
initial_pose_x parameter 267
initial_pose_y parameter 267
laser_likelihood_max_dist parameter 267
laser_model_type parameter 267
max_particles parameter 267
min_particles parameter 267

amcl node 244, 266
Analog-Digital converter (ADC) 184

Arduino
about 125
programming 136, 137
URL 133
used, for sensor addition 125, 126
using, example creating 126-129

%
back data
EDJ�ÀOH����
playing 97
saving 96

EDJ�ÀOH
about 97
data recording, with rosbag 98
playing back 99
topics inspecting, rxbag used 100, 101

bags
about 33
rosmsg packages 37

base controller
about 234
creating 234-241
odometry, creating with Gazebo 236, 238

base frame 94
base planner
FRQÀJXULQJ�����

bin/ 27
BMP085 sensor 134
broadcaster, transforms

creating 218
BSD (Berkeley Software Distribution) 9
Building Editor 289

[�����]

C
camera

calibrating 188-192
connecting 173
FireWire IEEE1394 cameras 174-178
stereo calibration 193-197
USB cameras 178-180

CMakeLists.txt 27
common parameters, costmaps
LQÁDWLRQBUDGLXV�DWWULEXWH�����
obstacle_range attribute 252
raytrace_range attribute 252

Coriander 174
costmaps
FRPPRQ�SDUDPHWHUV��FRQÀJXULQJ����������
FRQÀJXULQJ�����
global costmap 251
JOREDO�FRVWPDS��FRQÀJXULQJ�����
local costmap 251
ORFDO�FRVWPDS��FRQÀJXULQJ����������

custom odometry
creating 230-233

cv_bridge
used, for OpenCV dealing 186
used, for ROS images dealing 186

cv_bridge package 171

'
degrees of freedom. See DOF
demos, PR2 simulator

running 292
Displays pane 92
DOF 133
Dynamixel servomotor

about 121, 122
commands, receiving 123
commands, sending 123
using, example creating 124, 125

E
echo parameter 47
Edit | Software Sources 11

F
File | Import Appliance 19
FireWire IEEE1394 cameras 174-178
ÀUVW�85')�ÀOH

3D model, watching on rviz 145, 146
creating 142
ÀOH�IRUPDW��H[SODLQLQJ����������
meshes, loading to models 147
physical properties 149, 150
robot model, moving 148, 149

frame transformations, 3D visualization
XVHG��IRU�PHVVDJH�LQVSHFWLRQ�LQ�EDJ�ÀOH��

94-96

G
gamepad

using 104
Gazebo

map, loading 163-165
map, using 163-165
robot, moving 165-168
sensors, adding 162, 163
URDF 3D model, using 159-161
URL 158, 282
used, for creating odometry 227-230
using 158

Gazebo simulator
used, for REEM run 282-284

GDB debugger
using, ROS nodes used 66

global costmap
FRQÀJXULQJ�����

global plan
about 262

gmapping algorithm 291
JVFDPBFRQÀJ�FRPPDQG�����
GUID parameter 176

H
HMC5883L sensor 134
+RNX\R�85*���O[�UDQJHÀQGHU

about 110
data sending process 111-113

[�����]

laser data, accessing 113, 115
ODXQFK�ÀOH��FUHDWLQJ����������
using 110, 111

holonomic vehicle 254
Human Robot Interaction (HRI) 276
Husky

about 299
running, on simulation 300, 301
simulator, installing 300

I
images

FireWire cameras 88-90
single image, visualizing 87, 88
stereo vision, working with 90, 91
visualizing 87

ImageTransport
used, for image publishing 187

ImageTransport API
used, for camera frame publishing 182-185

Import button 20
IMU 129
include/package_name/ 27
inertial measurement unit. See IMU
LQÁDWHG�REVWDFOHV�����

J
joints 144
joy_node 105, 106
joystick

movements, sending 105
using 104

joystick data
used, for turtle moving 106-110

.
Kinect sensor

data, viewing 117-119
used, for 3D viewing 116, 117
using, example creating 119-121

L
L3G4200D sensor 134
ODXQFK�ÀOH

creating, for navigation stack 255
Lidar 110
links 144
listener, transforms

creating 218-220
local costmap
FRQÀJXULQJ�����

Logitech Attack 3 105
low-cost sensor

10DOF sensor 136, 137
accelerometer library, downloading 135
ADXL345 134
Arduino Nano, programming 135, 137
BMP085 134
HMC5883L 134
L3G4200D 134
using 134

M
manifest.xml 27
map

creating, ROS used 241, 242
loading, map_server used 244
saving, map_server used 243

map_server
about 241
used, for loading map 244
used, for saving map 243

master 32, 38
messages

about 29, 31, 32
conditional messages 73
debugging 69
GHEXJJLQJ�OHYHO��FRQÀJXULQJ��������
debug message level, setting 70
displaying, times 74
ÀOWHUHG�PHVVDJHV����
messages, naming 72, 73

[�����]

messages, ROS Computation Graph level
about 32, 37
rosmsg list 37
rosmsg package 37
rosmsg packages 37
rosmsg show 37

msg/ 27

N
navigation stack

about 216
EDVH�SODQQHU�FRQÀJXUDWLRQ�����
FRVWPDSV��FRQÀJXULQJ�����
goals, sending 269-272
ODXQFK�ÀOH��FUHDWLQJ�����
obstacles, avoiding 268
package, creating 248
URERW�FRQÀJXUDWLRQ��FUHDWLQJ�����
rviz, setting up 256
using 247

nodes
about 32, 34
rosnode cleanup 34
rosnode info node 34
rosnode kill node 34
rosnode list 34
rosnode machine hostname 34
rosnode ping node 34

O
obstacles 261
Occupancy Grid Map (OGM) 292
odometry

about 226
creating, with Gazebo 227-230

odometry information
publishing 226, 227

odom link 166
OpenCV

used, for creating own USB camera 180,
181

OpenCV used, for own USB camera creation
about 180, 181
camera input images, visualizing 188
cv_bridge, using 186

images, publishing with ImageTransport
187

ImageTransport API, using 182-185
in ROS 188
USB camera driver package, creating 181

P
package, navigation stack

creating 248
packages

bin/ folder 27
examples 28
include/package_name/ directory 27
msg/ 27
rosbash 28
tools 28

packages, tools
roscreate-pkg 28
rosdep 28
rosmake 28
rospack 28
rxdeps 28

PAL Robotics
URL 277

Parameter Server 32
particle cloud 259
Play button 101
PointCloud2 119
Point Cloud Library (PCL) 120
PR2

about 284
localization 289-292
mapping 289-292
running, in simulation 285-289

PR2 simulator
demos, running 292
installing 285
using 285

publish_odometry() function 230

R
R2. See Robonault 2
REEM

about 276-278
LQVWDOOLQJ��IURP�RIÀFLDO�UHSRVLWRU\���������
REEM-A 277

[�����]

REEM-B 277
REEM-C 277
REEM-H1 278
running, Gazebo simulator used 282-284

REEM-H1 278
Robonaut 2

about 293
arms, controlling 295
controlling, with Interactive Markers 295,

297
installing, from sources 293, 294
ISS environment, loading 298
legs, giving 297, 298
UXQQLQJ��LQ�,66�À[HG�SHGHVWDO�����

Robonaut 2 arms
Cartesian mode 295
Joint mode 295

robot
Husky 299
PR2 284
REEM 276
Robonaut 2 293
TurtleBot 302

URERW�FRQÀJXUDWLRQ
creating 248-250

robot footprint
about 260

Robot Operating System. See ROS
robots

Husky rover 276
PR2 276
REEM 276
Robonaut 2 276
working with 275

roomba 275
ROS

about 8-10
navigation stack 216
OpenCV, using 188
practice tutorials 39
simulation 158
used, for creating map 241

rosbag tool 37
roscd command 28
ROS Community level

about 39

distribution 39
mailing lists 39
repositories 39
ROS Wiki 39

ROS Computation Graph level
about 32
bags 33
master 32
nodes 32
parameter Server 32
services 33
topic 33

rosconsole
using 75-78

roscore command 38, 140
roscp command 28
roscreate-pkg command 28
rosd command 28
rosdep command 28
rosed command 28
rosed tool 55
ROS Electric

installing, repositories used 10, 11
ROS Electric installation

environment setup 13, 14
keys, setting 12
UHSRVLWRULHV��DGGLQJ�WR�VRXUFHV�OLVW�ÀOH����
starting with 12

526�ÀOHV\VWHP
navigating through 39

ROS Filesystem level
about 26
manifests 26
message (msg) types 26
messages 29, 31
packages 26, 27, 28
services 31
service (srv) types 26
stack manifests 26
stacks 26, 29

ROS framework
about 63, 64
debugging 63

ROS Fuerte
installing, repositories used 14

[�����]

ROS Fuerte installation
environment setup 17, 18
keys, setting up 15
repositories, using 14
VRXUFH�OLVW�ÀOH��VHWWLQJ�XS����
standalone tools 18
steps 15, 16
8EXQWX�UHSRVLWRULHV��FRQÀJXULQJ����

ROS image pipeline
about 198-200
for stereo cameras 201-203

roslaunching 67
rosls command 28
rosmake command 28
rosmsg list parameter 37
rosmsg md5 parameter 37
rosmsg package parameter 37
rosmsg packages parameter 37
rosmsg show parameter 37
rosmsg users parameter 37
ROS nodes

attaching, to GDB 67
core dumps, enabling 68
debugging 66-68
GDB debugger, using 66
playing with 42, 43, 44

rosout 81
ROS package

building 42
creating 41

ROS packages, for computer vision tasks
Augmented Reality (AR) 204
Perception 205
recognition 205
Visual odometry 205
Visual Servoing (Vision-based Robot

Control) 204
rospack command 28
rosparam delete parameter 38, 51
URVSDUDP�GXPS�ÀOH��������
rosparam get parameter 38, 51
rosparam list 38, 51
URVSDUDP�ORDG�ÀOH��������
rosparam set parameter value 38, 51
rosparam tool 38

ROS practice tutorials
msg, creating 57
PVJ�ÀOHV��XVLQJ�������
new srv, using 58-61
node, building 55, 56
nodes, creating 52-55
own workspace, creating 40, 41
Parameter Server, using 51
526�ÀOHV\VWHP��QDYLJDWLQJ�WKURXJK����
ROS nodes, playing with 42-45
ROS package, building 42
ROS package, creating 41, 42
services, using 49, 50
VUY�ÀOHV��FUHDWLQJ��������
topics, interacting with 45-48

rosservice call /service args command 36
URVVHUYLFH�ÀQG�PVJ�W\SH�FRPPDQG����
rosservice info /service command 36
rosservice list command 36
rosservice type /service command 36
rosservice uri /service command 36
ROS setup, for navigation stack

about 215
base controller, creating 234
map, creating 241
odometry information, publishing 226
sensor information, publishing 222
transforms, creating 217

rostopic bw 45
rostopic bw /topic parameter 35
rostopic command 130
rostopic echo command 163
rostopic echo /topicparameter 35
URVWRSLF�ÀQG����
URVWRSLF�ÀQG�PHVVDJHBW\SH�SDUDPHWHU����
rostopic hz 45
rostopic hz /topic parameter 36
rostopic info 45
rostopic info /topic parameter 36
rostopic list parameter 36
rostopic pub 45
rostopic pub /topic type args parameter 36
Rostopic tool 37
rostopic type 45
rostopic type /topic parameter 36

[�����]

roswtf
running 83

rqt plugins
versus rx applications 102

rviz
about 94, 172, 256
setting up, for navigation stack 256

rx applications
versus rqt plugins 102

rxbag
XVHG��IRU�PHVVDJH�LQVSHFWLRQ�LQ�EDJ�ÀOH��

100, 101
Rxbag tool 37
rxconsol

using 75-79
rxdeps command 28
rxgraph

used, for node graph online inspection
80-82

S
scalar data

plotting 83
rxtools 86
time series plot creating, rxplot used 84, 85

scripts/ 27
sensor information

laser node, creating 223-225
publishing 222

Serial Clock (SCK) 135
Serial Data Line (SDL) 135
services

about 31, 33, 36
rosservice call /service args command 36
URVVHUYLFH�ÀQG�PVJ�W\SH�FRPPDQG����
rosservice info /service command 36
rosservice list command 36
rosservice type /service command 36
rosservice uri /service command 36

servomotors. See Dynamixel servomotors
Setup button 78
simulation, in ROS

about 158
map, loading 163-165
robot, moving 165-168

sensors, adding 162, 163
URDF 3D model, using in Gazebo 159-161

SketchUp
3D modeling 156-158

src/ 27
srv/ 27
stacks 29
static map 258
stereo cameras

image pipeline 201-203

T
TCPROS 35
TF (Transform Frames) 94, 217
WRROV��IRU�XVLQJ�EDJ�ÀOHV

rosbag 37
Rostopic 37
Rxbag 37

topics 33, 35
transformation tree, transforms

viewing 221
transforms

broadcaster, creating 218
creating 217
listener, creating 218-220
transformation tree, viewing 221

TurtleBot
about 302
installing 303

TurtleBot simulation
installing 302
running, on simulation 303

8
Ubuntu

installing, steps 18, 19
ubuntu distro 173
UDPROS 35
8QLÀHG�5RERW�'HVFULSWLRQ�)RUPDW��See

URDF
Unmanned Ground Vehicle (UGV) 299
URDF 141
USB camera driver package

creating 181
USB cameras 178-180

[�����]

V
VirtualBox

downloading 19
installing, steps 18, 19
virtual machine, creating 19-22

viso2
used, for visual odometry performance 205,

206
viso2_ros wrapper 173
visualization topic, navigation stack

2D nav goal 258
2D pose estimate 257
global plan 262
goal 264
LQÁDWHG�REVWDFOHV�����
local plan 263
obstacles 261
particle cloud 259
planner plan 264
robot footprint 260
static map 258

visual odometry
performing, with viso2 205

visual odometry, performing with viso2
about 205, 206
camera pose calibration 206-209
viso2 online demo, running 210-212
viso2, running 213

W
Willow Garage robot. See PR2
ZRUOG�ÀOH�����
world frame 94

;
Xacro

3D modeling, with SketchUp 156-158
about 150
constants, using 151
macros, using 151, 152
math, using 151
robot, moving with code 152-155

Xsens MTi
about 129, 130
data, sending in ROS 130
using, example creating 131, 133

Thank you for buying
/HDUQLQJ�526�IRU�5RERWLFV�3URJUDPPLQJ

About Packt Publishing
3DFNW��SURQRXQFHG�
SDFNHG
��SXEOLVKHG�LWV�ÀUVW�ERRN��Mastering phpMyAdmin for Effective

MySQL Management" in April 2004 and subsequently continued to specialize in publishing
KLJKO\�IRFXVHG�ERRNV�RQ�VSHFLÀF�WHFKQRORJLHV�DQG�VROXWLRQV�

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
WR�JHW�WKH�MRE�GRQH��3DFNW�ERRNV�DUH�PRUH�VSHFLÀF�DQG�OHVV�JHQHUDO�WKDQ�WKH�,7�ERRNV�\RX�KDYH�
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
\RX�ZRXOG�OLNH�WR�GLVFXVV�LW�ÀUVW�EHIRUH�ZULWLQJ�D�IRUPDO�ERRN�SURSRVDO��FRQWDFW�XV��RQH�
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

&�3URJUDPPLQJ�IRU�$UGXLQR�
ISBN: 978-1-849517-58-4 Paperback: 512 pages

Learn how to program and use Arduino boards
with a series of engaging examples, illustrating
each core concept

1. Use Arduino boards in your own electronic
hardware and software projects

2. Sense the world by using several sensory
components with your Arduino boards

3. Create tangible and reactive interfaces
with your computer

4. Discover a world of creative wiring and
coding fun!

7RUWRLVH691�����%HJLQQHU
V�*XLGH
ISBN: 978-1-849513-44-9 Paperback: 260 pages

Perform version control in the easiest way with the
best SVN client – TortoiseSVN

1. Master version control techniques
with TortoiseSVN without the need
for boring theory

2. Revolves around a real-world example
based on a software company

��� 7KH�ÀUVW�DQG�WKH�RQO\�ERRN�WKDW�IRFXVHV�RQ�
version control with TortoiseSVN

4. Reviewed by Stefan Kung, lead developer
for the TortoiseSVN project

Please check ZZZ�3DFNW3XE�FRP for information on our titles

Git: Version Control for Everyone
%HJLQQHU
V�*XLGH
ISBN: 978-1-849517-52-2 Paperback: 180 pages

The non-coder's guide to everyday version control for
LQFUHDVHG�HIÀFLHQF\�DQG�SURGXFWLYLW\

��� $�FRPSOHWH�EHJLQQHU
V�ZRUNÁRZ�IRU�YHUVLRQ�
control of common documents and content

2. Examples used are from non-techie, day-to-day
computing activities we all engage in

3. Learn through multiple modes – readers learn
theory to understand the concept and reinforce
it by practical tutorials

Linux Shell Scripting Cookbook
ISBN: 978-1-849513-76-0 Paperback: 360 pages

Solve real-world shell scripting problems with
over 110 simple but incredibly effective recipes

1. Master the art of crafting one-liner command
sequence to perform tasks such as text
SURFHVVLQJ��GLJJLQJ�GDWD�IURP�ÀOHV��DQG�
lot more

2. Practical problem solving techniques adherent
to the latest Linux platform

3. Packed with easy-to-follow examples to
exercise all the features of the Linux shell
scripting language

Please check ZZZ�3DFNW3XE�FRP for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapters 1: Getting Started with ROS
	Installing ROS Electric – using repositories
	Adding repositories to your sources.list file
	Setting up your keys
	Installation
	The environment setup

	Installing ROS Fuerte – using repositories
	Configuring your Ubuntu repositories
	Setting up your source.list file
	Setting up your keys
	Installation
	The environment setup
	Standalone tools

	How to install VirtualBox and Ubuntu
	Downloading VirtualBox
	Creating the virtual machine

	Summary

	Chapters 2: The ROS Architecture with Examples
	Understanding the ROS Filesystem level
	Packages
	Stacks
	Messages
	Services

	Understanding the ROS Computation Graph level
	Nodes
	Topics
	Services
	Messages
	Bags
	Master
	Parameter Server

	Understanding the ROS Community level
	Some tutorials to practice with ROS
	Navigating through the ROS filesystem
	Creating our own workspace
	Creating an ROS package
	Building an ROS package
	Playing with ROS nodes
	Learning how to interact with topics
	Learning how to use services
	Using the Parameter Server
	Creating nodes
	Building the node
	Creating msg and srv files
	Using the new srv and msg files

	Summary

	Chapters 3: Debugging and Visualization
	Debugging ROS nodes
	Using the GDB debugger with ROS nodes
	Attaching a node to GDB while launching ROS
	Enabling core dumps for ROS nodes

	Debugging messages
	Outputting a debug message
	Setting the debug message level
	Configuring the debugging level of a particular node
	Giving names to messages
	Conditional and filtered messages
	More messages – once, throttle, and combinations
	Using rosconsole and rxconsole to modify the debugging level on the fly

	Inspecting what is going on
	Listing nodes, topics, and services
	Inspecting the node's graph online with rxgraph

	When something weird happens – roswtf!
	Plotting scalar data
	Creating a time series plot with rxplot
	Other plotting utilities – rxtools

	Visualization of images
	Visualizing a single image
	Firewire cameras
	Working with stereo vision

	3D visualization
	Visualizing data on a 3D world using rviz
	The relationship between topics and frames
	Visualizing frame transformations

	Saving and playing back data
	What is a bag file?
	Recording data in a bag file with rosbag
	Playing back a bag file
	Inspecting all the topics and messages in a bag file using rxbag

	rqt plugins versus rx applications
	Summary

	Chapters 4: Using Sensors and Actuators with ROS
	Using a joystick or gamepad
	How does joy_node send joystick movements?
	Using joystick data to move a turtle in turtlesim

	Using a laser rangefinder – Hokuyo URG-04lx
	Understanding how the laser sends data in ROS
	Accessing the laser data and modifying it
	Creating a launch file

	Using the Kinect sensor to view in 3D
	How does Kinect send data from the sensors and how to see it?
	Creating an example to use Kinect

	Using servomotors – Dynamixel
	How does Dynamixel send and receive commands for the movements?
	Creating an example to use the servomotor

	Using Arduino to add more sensors and actuators
	Creating an example to use Arduino

	Using the IMU – Xsens MTi
	How does Xsens send data in ROS?
	Creating an example to use Xsens

	Using a low-cost IMU – 10 degrees of freedom
	Downloading the library for the accelerometer
	Programming Arduino Nano and the 10DOF sensor
	Creating a ROS node to use data from the 10DOF sensor

	Summary

	Chapters 5: 3D Modeling and Simulation
	A 3D model of our robot in ROS
	Creating our first URDF file
	Explaining the file format
	Watching the 3D model on rviz
	Loading meshes to our models
	Making our robot model movable
	Physical and collision properties

	Xacro – a better way to write our robot models
	Using constants
	Using math
	Using macros
	Moving the robot with code
	3D modeling with SketchUp

	Simulation in ROS
	Using our URDF 3D model in Gazebo
	Adding sensors to Gazebo
	Loading and using a map in Gazebo
	Moving the robot in Gazebo

	Summary

	Chapters 6: Computer Vision
	Connecting and running the camera
	FireWire IEEE1394 cameras
	USB cameras

	Making your own USB camera driver with OpenCV
	Creating the USB camera driver package
	Using the ImageTransport API to publish the camera frames
	Dealing with OpenCV and ROS images using cv_bridge
	Publishing images with ImageTransport
	Using OpenCV in ROS
	Visualizing the camera input images

	How to calibrate the camera
	Stereo calibration

	The ROS image pipeline
	Image pipeline for stereo cameras

	ROS packages useful for computer vision tasks
	Performing visual odometry with viso2
	Camera pose calibration
	Running the viso2 online demo
	Running viso2 with our low-cost stereo camera

	Summary

	Chapters 7: Navigation Stack – Robot Setups
	The navigation stack in ROS
	Creating transforms
	Creating a broadcaster
	Creating a listener
	Watching the transformation tree

	Publishing sensor information
	Creating the laser node

	Publishing odometry information
	How Gazebo creates the odometry
	Creating our own odometry

	Creating a base controller
	Using Gazebo to create the odometry
	Creating our base controller

	Creating a map with ROS
	Saving the map using map_server
	Loading the map using map_server

	Summary

	Chapters 8: Navigation Stack – Beyond Setups
	Creating a package
	Creating a robot configuration
	Configuring the costmaps
(global_costmap) and (local_costmap)
	Configuring the common parameters
	Configuring the global costmap
	Configuring the local costmap

	Base local planner configuration
	Creating a launch file for the navigation stack
	Setting up rviz for the navigation stack
	2D pose estimate
	2D nav goal
	Static map
	Particle cloud
	Robot footprint
	Obstacles
	Inflated obstacles
	Global plan
	Local plan
	Planner plan
	Current goal

	Adaptive Monte Carlo Localization (AMCL)
	Avoiding obstacles
	Sending goals
	Summary

	Chapters 9: Combining Everything – Learn by Doing
	REEM – the humanoid of PAL Robotics
	Installing REEM from the official repository
	Running REEM using the Gazebo simulator

	PR2 – the Willow Garage robot
	Installing the PR2 simulator
	Running PR2 in simulation
	Localization and mapping
	Running the demos of the PR2 simulator

	Robonaut 2 – the dexterous humanoid of NASA
	Installing the Robonaut 2 from the sources
	Running Robonaut 2 in the ISS fixed pedestal
	Controlling the Robonaut 2 arms
	Controlling the robot easily with interactive markers
	Giving legs to Robonaut 2
	Loading the ISS environment

	Husky – the rover of Clearpath Robotics
	Installing the Husky simulator
	Running Husky on simulation

	TurtleBot – the low-cost mobile robot
	Installing the TurtleBot simulation
	Running TurtleBot on simulation

	Summary

	Index

